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Abstract

Probabilistic subspace mixture models, as proposed over the last few years,
are interesting methods for learning image manifolds, i.e. nonlinear sub-
spaces of spaces in which images are represented as vectors by their grey-
values. However, for many practical applications, where outliers are com-
mon, these methods still lack robustness. Here, the idea of robust mixture
modelling by t-distributions is combined with probabilistic subspace mixture
models. The resulting robust subspace mixture model is shown experimen-
tally to give advantages in density estimation and classification of image data
sets.

1 Introduction
The last few years have seen an increasing interest in subspace methods, specifically when
applied to image data. Many approaches approximate image data, represented by grey-
values as vectors in high-dimensional spaces, using linear subspaces. These can be found
using a number of well-known subspace techniques, such as principal component analysis
(PCA) or factor analysis (FA). The subspaces themselves can be used as models for the
projected image data (so-called appearance-based methods), or they can be used as a form
of feature extraction to ease further processing.

Work has also proceeded on modelling nonlinear subspaces, i.e. curves or manifolds.
Methods to do so broadly fall into three main categories: fitting principal curves and sur-
faces to the data; embedding the data; and modelling the data by (constrained) mixture
models. This latter group of methods has received much attention. Most mixture models
approximate a manifold using a relatively small number of localised subspaces, which
are modelled by Gaussians with restricted covariance matrices [12; 3], possibly with a
constraint on the relations between the models [1; 9]. Their popularity is due to the fact
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that they are usually trained by the well-understood expectation-maximisation (EM) al-
gorithm, for which a large body of literature exists. Methods of optimising the number of
models to use, be it by using greedy algorithms or Bayesian learning, are readily available.

However, mixture models still have their drawbacks. First, the EM algorithm can
only be guaranteed to converge to a local optimum. Second, as the models are density-
based, dense data sets are necessary to train them. Finally, use of Gaussian densities
means these methods are not robust to outliers. Especially when mixture models are
used for subsequent classification this can lead to performance degradation. Although
supervised mixture model techniques exist (e.g. [5; 10]), these algorithms are complex,
computationally intensive and/or limited to specific data models.

In this paper, the problem of robustness to outliers will be addressed. First, an
overview of probabilistic subspace models will be given in Section 2. Inspired by re-
cent developments in statistics [8], a mixture of subspace t-distributions will be proposed
in Section 3. This method can be shown to be much more robust against outliers than
methods based on Gaussian densities. Its usefulness will be demonstrated on a toy ex-
ample and a real-world problem in Section 4. The paper ends with conclusions and an
outlook to further applications.

2 Subspace mixture models

2.1 Probabilistic subspace models
The two main models for mixtures of subspaces are mixtures of probabilistic principal
component analysers (PPCA, [12]) and mixtures of factor analysers (FA, [3]). Both are
based on a subspace model in which an observed variable�x ∈ R

d is generated by a some
low-dimensional variable�s ∈ R

m, where typically m � d:

�x = �A�s+�µ +�ε (1)

The low-dimensional variable is thus shifted w.r.t. to the center�µ of the subspace, mapped
into the high-dimensional space by a projection operator �A, and i.i.d. Gaussian noise �ε
with p(�ε) = N(�ε;�0,�Ψ) is added. The distributions of the variables are:

p(�s) = N(�s;�0,�I) (2)

p(�x|�s) = N(�x;�A�s+�µ,�Ψ) (3)

As both p(�s) and p(�x|�s) are Gaussian, the marginal distribution of�x will be so as well:

p(�x) =
∫

p(�x|�s)p(�s)d�s (4)

whose mean and covariance matrix can easily be found from (1):

E(�x) =�µ and E(�x�xT ) = �AE(�s�sT )�AT +�Ψ = �A�AT +�Ψ (5)

i.e.,�x is distributed as:

p(�x) = N(�x;�µ,�A�AT +�Ψ) (6)



The difference between principal component analysis and factor analysis lies in the
assumed noise model. FA assumes �Ψ to be a diagonal matrix, whereas PPCA assumes �Ψ
to be a multiple of the identity matrix, σ2�I. FA thus models the individual noise level in
each of the dimensions (i.e. pixels, for image data), PPCA assumes all dimensions have an
equal noise level. In this paper, only PPCA will be discussed; however, all observations
are equally applicable to FA.

2.2 The EM algorithm for mixtures of PPCAs
Tipping and Bishop [12] derived an EM algorithm for maximum likelihood learning of
a mixture of k PPCA’s. It will be summarised here in enough detail to allow the reader
to understand the effects of using a different density model later on; for a more detailed
derivation, see the original paper. The probability of observing a sample�x is given by:

p(�x) =
k

∑
j=1

π j p(�x| j) (7)

where the π j are mixing parameters, for which ∑k
j=1π j = 1, and p(�x| j) is the probability of

�x under model j given by (6). The log-likelihood of observing a data set �X = {�x1, . . . ,�xn}
is:

L (�X) = log
n

∏
i=1

p(�xi) =
n

∑
i=1

log
k

∑
j=1

π j p(�xi| j) (8)

To maximise (8) w.r.t. the parameters {π j,�µ j,�A j,σ2
j }, j = 1, . . . ,k, a hidden indicator

variable zi j is introduced, which is 1 when sample �xi is generated by model j, and 0
otherwise; the mixing parameters π j are then equal to p(zi j = 1). The complete-data
distribution can now be written as:

p(�x,�s,�z) =
n

∏
i=1

p(�xi|�si,�zi)p(�si|�zi)p(�zi) =
n

∏
i=1

k

∏
j=1

[π j p(�xi|�si, j)p(�si| j)]zi j (9)

where n is the number of samples in the dataset, p(�xi|�si, j) and p(�si| j) are given by (3)
and (2), respectively, and p(·| j) is short for p(·|zi j = 1).

The EM algorithm uses the fact that the maximum of the log of (9) can easily be found
analytically, to maximise (8) w.r.t. the parameters [7]. The M step of the EM algorithm
for mixtures of PPCAs [12] actually consists of two steps: in the first, only the mixing
parameters π j and the means �µ j are updated; in the second, new values for the �A j and σ2

j
are found. Combined, this gives:

• E step: for all i and j, calculate the posterior responsibility of each model for each
sample, i.e. the expectation of zi j:

ri j = E(zi j) =
π j p(�xi| j)

p(�xi)
=

π j p(�xi| j)
∑k

l=1 πl p(�xi|l)
(10)

• M step: for all j, update the estimates of the parameters (a prime indicating new
parameters):

π ′
j =

1
n

n

∑
i=1

ri j and �µ ′
j =

∑n
i=1ri j�xi

∑n
i=1ri j

(11)



The per-model weighted sample covariance matrix �S′j,

�S′j =
∑n

i=1ri j(�xi −�µ ′
j)(�xi −�µ ′

j)
T

∑n
i=1ri j

(12)

can then be used to find �A′
j and σ2

j
′, using normal eigendecomposition:

�A′
j = �E j(�Λ j −σ2

j
′�I)

1
2 and σ2

j
′
=

1
d −m

d

∑
l=m+1

λl (13)

where �Λ j contains the m leading eigenvalues of �S′j on its diagonal, �E j the corre-

sponding eigenvectors, and the λ j
l are the trailing eigenvalues.

Tipping and Bishop actually describe a faster version of the EM algorithm as well, updat-
ing �A j and σ2

j iteratively. However, this still uses just �S′j.

2.3 Application to manifold learning
The mixture model described above is clearly a mixture of Gaussians, in which the covari-
ance matrices are restricted to a specific form, controlled by the parameter m. Although
the Gaussian distribution is mathematically elegant and allows one to derive the EM al-
gorithm above, it is not necessarily optimal for manifold learning. The problem is that
it may assign high probability to large empty volumes in space, in the presence of a few
outliers. This is illustrated in Figure 2(a)-(c) for a simple 2D problem, where 200 samples
are distributed along 2 1D curves, with some added Gaussian noise. When just a few
uniformly distributed outliers are present, one or more of the Gaussians are used to model
these. The resulting model no longer describes the manifolds well.

What is needed for cases such as these is a more robust mixture model. There has
recently been interest in the vision and statistics communities in modelling single sub-
spaces more robustly (e.g. [2; 6]), as manifold learning is applied to increasingly more
problems1. However, many of the proposed techniques are cumbersome, iterative, take a
large amount of computation or are not applicable in a mixture model.

We propose that for manifold learning, finding an exact local PCA solution is not
necessary, as long as the main axes of the densities are aligned with the manifold. Then,
more robust densities can be used in the mixture, resulting in models that will mainly
assign high probability to samples on the manifold. From the statistics literature, there is
a wide range of possible robust approaches (see e.g. [4]). A simple solution in mixture
modelling consists of adding a uniform density into the mixture to capture the outliers.
The problem with this approach is that the range over which this uniform distribution
is defined will have to be set, which is not trivial in high-dimensional spaces. Another
interesting approach is to use two Gaussian components per model in the mixture:

p(�x) = (1− c)N(�x;�µ,�C)+ cN(�x;�µ,α�C) (14)

Here, the second Gaussian is used to model outliers. Obviously, this leads to the question
how to set or learn α . Below, a generalised and more elegant implementation of this idea,
using the t-distribution, will be discussed.

1Note that not all robust approaches are only concerned with ignoring outliers; some also aim at being robust
against outlying pixel values. Robustness in this sense is not addressed in this work.
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Figure 1: (a) The convolution of two Gaussians N(x; µ ,σ2) is itself a Gaussian; (b) in
general, the convolution of two t-pdfs t(x; µ ,σ2,ν) is not a t-pdf, however (c) for small
σ2 it approximates it well.

3 Mixtures of t-distributed subspaces
A recent development in the statistics community is that of a mixture of t-distributions [8].
The motivation is as follows: a generalisation of the two-component normal mixture
model (14) is the normal scale model, where

p(�x) =
∫

N(�x;�µ,u−1�C)dH(u) (15)

This is identical to (14) when H is a pdf with H(1) = 1− c, H( 1
c ) = c and 0 elsewhere.

If, however, H is replaced by a χ2 pdf with ν degrees of freedom, with a gamma prior on
u of p(u) = γ(u;ν/2,2/ν), the resulting distribution is a t-distribution [7; 8]. Here,

γ(u;α,θ) = uα−1 exp(−uθ−1)Γ(α)−1θ−α (16)

The t-distribution is a heavier-tailed alternative to the Gaussian, with an additional
parameter ν , the degrees of freedom. The pdf of a random variable�x with a multivariate
t-distribution is given by:

t(�x;�µ,�C,ν) = (πν)−
d
2 Γ

(
ν +d

2

)
Γ

(ν
2

)−1 (
(�x−�µ)T �C−1(�x−�µ)+1

)− ν+d
2

(17)

where Γ is the Gamma function, �µ is the mean and �C the covariance matrix. For ν → ∞,
the t-distribution becomes a Gaussian distribution.

The key element in deriving the EM algorithm for mixtures of PPCA was that the
convolution of two Gaussians is itself a Gaussian; this was used to derive (6). For t-
distributions, the convolution of

p(�x|�s) = t(�x;�A�s+�µ,σ2�I) and p(�s) = t(�s;�0,�I) (18)

is not necessarily a t-distribution. However, it is to good approximation for large ν (as the
t-distribution becomes like a Gaussian) or for small σ2 in (18). The latter is a consequence
of the fact that for small σ2, convolution with a Gaussian will approximate convolution
with a delta function, as is illustrated in Figure 1 for the univariate case.

In manifold learning, one will typically observe small values of σ2 (provided the
manifold dimensionality is chosen correctly). Approximately, then:

p(�xi| j) ≈ t(�xi;�µ j,�A j�AT
j +σ2

j
�I,ν j) (19)



This allows us to use the EM algorithm derived for mixtures of constrained Gaussians
above, and apply it to a mixture of constrained t-distributions. Again, a full derivation is
not given; please see [8] for more information.

In using the EM algorithm to maximise (8) when a mixture of t-distributions is used,
a new hidden variable ui j is introduced. If�xi belongs to model j (i.e. zi j = 1), then:

p(�xi|�si,ui j, j) = N(�xi;�A�si +�µ j,u−1
i j

�Ψ j) (20)

Intuitively, ui j is the weight assigned by model j to sample �xi: outliers will be given
low weight, and hence be described by a Gaussian with high covariance matrix elements.
As above, given model j, the ui j are assumed independently distributed according to a
gamma distribution, p(ui j| j) = γ(ui j;ν j/2,2/ν j).

The complete-data distribution becomes:

p(�x,�s,�z,�u) =
n

∏
i=1

p(�xi|�si,�ui,�zi)p(�si|�ui,�zi)p(�ui|�zi)p(�zi)

=
n

∏
i=1

k

∏
j=1

[π j p(�xi|�si, j,ui j, j)p(�si|ui j, j)p(ui j| j)]zi j (21)

with p(�xi|�si,ui j, j) given by (20), p(�si|ui j, j) = N(0,u−1
i j

�I) and p(ui j| j) given above.
The EM algorithm maximising (8) w.r.t. the parameters consist of:

• E step: for all i and j, calculate ri j according to (10), and

ui j =
ν j +d

ν j +(�xi −�µ j)T (�A j�AT
j +σ2

j
�I)−1(�xi −�µ j)

(22)

• M step: for all j, re-estimate the π ′
js as in (11) and

�µ ′
j =

∑n
i=1ri jui j�xi

∑n
i=1ri jui j

and �S′j =
∑n

i=1ri jui j(�xi −�µ ′
j)(�xi −�µ ′

j)
T

∑n
i=1ri j

(23)

�S′j can then be used to find �A′
j and σ2

j
′ using normal eigendecomposition as in (13),

or it can be used in Tipping and Bishop’s faster version of the algorithm.

The only parameters not re-estimated yet in the M step are the ν j’s. Following [8], they
can be updated by equating the derivative of all terms involving ν j in the log-likelihood to
zero. A solution can then be found using a nonlinear solver. However, in all experiments
in this paper ν j was fixed at 2, ∀ j, as we are specifically interested in robust manifold
learning (for more discussion on this, see Sections 4.1 and 5).

It is easy to see that the changes this EM algorithm introduces w.r.t. that outlined in
Section 2.2 are minimal. An additional weight ui j is calculated for each sample �xi and
model j, which is used to re-estimate the means and sample covariance matrices robustly.
Besides the actual model, a useful extra output of this algorithm are exactly these weights,
which for outliers will be low.



4 Experiments

4.1 Density estimation
Figure 2 demonstrates the robustness of the proposed mixture of t-subspaces on a toy
data set. The data was sampled from 2 semicircles, with some added Gaussian noise. To
these 200 samples q uniformly distributed noise samples were added. Mixtures of PPCAs
(MPPCA) with k = 6, m = 1 and mixtures of t-distributed subspaces (MTS) with identical
settings were trained on this set. For the MTS, ν j was fixed at 2, ∀ j.

For q = 0, i.e. when no noise is added, both methods give more or less similar results.
The likelihood of the MPPCA model is slightly higher than that of the MTS model. Note
that MTS tends to assign low probability to samples at the “edges” of the manifolds; this is
due to the fact that the within-subspace probability model is t-distributed as well. Samples
lying along the main axes of a subspace, but far away from its mean, will therefore be
assigned low weight ui j. When outliers are added, MPPCA loses the manifold structure
quite quickly. Already when q = 10, i.e. a fraction of outliers of 5%, 1 of the 6 PPCA
models is used to model these. For 50% outliers, the manifold structure is lost completely.
MTS is more robust: although the quality of the density estimate along the manifold
deteriorates, it manages to downweight the outliers. Furthermore, the likelihood of the
MTS becomes higher than that of the MPPCA.

The results obtained in Figures 2(d)-(f) were obtained when ν j was fixed to 2, for all
models. If ν j is set higher, robustness is gradually lost; Figure 2(g) illustrates this for
higher settings (here ν j was fixed at 5). When ν j is learned, after initialisation at 5, the
result (Figure 2(h)) is nearly as poor as that of MPPCA.

4.2 Handwritten digit recognition
The MPPCA and MTS models were also compared on a classification problem, hand-
written digit recognition. The database used was a pre-processed version of the NIST
database. The original NIST database digits [13] were resized to 16× 16 pixel images
(preserving the aspect ratio), put upright, normalised for pencil-width and rescaled in
grey value to [−1,1]. A data set of 1000 training samples per class was thus created, as
well as a test set containing 1000 samples per class.

Global principal component analysis on the training set left 51 dimensions. In this
51D space, mixture models were trained on each individual digit, for various settings
of the number of subspaces, k, and the number of dimensions per subspace, m. All ex-
periments were repeated for 10 different initialisations, by the k-means algorithm. The
covariance matrices �Cj = �A j�AT

j + σ2
j
�I found in each iteration of the EM algorithm were

regularised by adding 10−3�I, to prevent the likelihood from becoming infinite. For the
MTS models, the ν j’s were fixed at 2; no attempt has been made to optimise this set-
ting. Table 1 presents the classification results obtained using MPPCA and MTS models,
obtained by Bayesian classification using the densities found for each digit.

The table demonstrates that the proposed MTS models perform slightly better, for
individual settings of k and m, than MPPCA models. The minimum error reached is also
lower, at 1.89% vs. 2.27%. Another interesting observation is that, where MPPCA has
a clear optimal model for k = 4 and m = 12− 16, MTS performance decreases more
gracefully with different parameter settings. Even for very large models (e.g. k = 16,



(a) q = 0, L = −882 (b) q = 10, L = −998 (c) q = 100, L = −1683

(d) q = 0, L = −910 (e) q = 10, L = −1000 (f) q = 100, L = −1642

(g) q = 100, L = −1634 (h) q = 100, L = −1664

Figure 2: Density estimates on a simple 2D toy dataset of 200 samples distributed along
2 1D curves, with some added Gaussian noise and q added uniformly distributed noise
samples: (a)-(c) MPPCA, (d)-(f) MTS (both k = 6, m = 1). (g) MTS with ν j fixed at 5,
∀ j. (h) Same, but with ν j initialised at 5, ∀ j, and optimised by the EM algorithm. For the
latter, after training the ν j’s ranged between 18.8 and 20.6. All runs of the EM algorithm
were randomly initialised.

m = 20) the error is only 2.58%, as compared to 5.07% for MPPCA. This clearly indicates
that MTS is less likely to assign high probability to regions that do not contain data.

The MTS models not only give better performance, but also a slightly higher likeli-
hood on both the training set and the test set, although with fixed ν j’s they have the same
number of free parameters as MPPCA models. This is illustrated in Figure 3(a) for the test
set. The difference is largest for digits with little natural variation in appearance, i.e. digits
“0”, “1”, “4”, “7” and “9”. For digits with a larger amount of variation the likelihood dif-
ference is not as pronounced. This indicates that MPPCA tends to over-estimate variance
due to the presence of outliers; in other words, by assigning low weight to outliers, MTS
obtains a tighter fit around the manifold, while not overfitting.

Finally, Figures 3(b)-(c) show some histograms of ∑k
j=1 ui j, the cumulative weight

assigned to samples by an MTS mixture with k = 4,m = 12. Outliers have been cor-
rectly given low weight, and “prototypical” digits have been given high weight. Simple
thresholding of the cumulative weight makes for an easy outlier removal procedure.



(a)

m = 4 8 12 16 20

k = 2 4.23 (0.10) 3.42 (0.07) 2.94 (0.04) 2.79 (0.08) 2.64 (0.05)
4 3.36 (0.15) 2.54 (0.09) 2.27 (0.10) 2.31 (0.11) 2.34 (0.11)
8 3.14 (0.14) 2.50 (0.08) 2.57 (0.13) 2.81 (0.24) 4.00 (2.99)

12 4.09 (3.03) 3.66 (2.99) 4.08 (2.95) 3.50 (0.12) 3.87 (0.20)
16 5.93 (6.31) 3.94 (2.97) 4.48 (3.05) 5.16 (2.99) 5.07 (0.52)

(b)

m = 4 8 12 16 20

k = 2 4.48 (0.09) 3.03 (0.09) 2.56 (0.06) 2.55 (0.02) 2.70 (0.05)
4 3.21 (0.08) 2.39 (0.08) 2.14 (0.05) 2.02 (0.10) 2.18 (0.06)
8 2.67 (0.13) 2.13 (0.08) 2.02 (0.13) 1.89 (0.12) 2.15 (0.12)

12 2.36 (0.12) 2.02 (0.08) 2.20 (0.59) 2.08 (0.18) 2.25 (0.20)
16 2.54 (0.62) 2.09 (0.11) 2.31 (0.40) 2.41 (0.29) 2.58 (0.27)

Table 1: Performance of (a) MPPCA and (b) MTS models with different settings for
the number of subspaces k and number of dimensions per subspace, m. Numbers are %
error on a test set, average and standard deviation over 10 different initialisations of the
algorithm.

5 Conclusions
A method for robust manifold learning by EM has been presented, based on earlier work
on mixtures of probabilistic PCA subspaces and mixtures of t-distributions. It is less suit-
able for density estimation in the absence of outliers, as it tends to ignore the “edges” of
the data set. However, in the presence of outliers, it is much more robust than mixtures of
PCA subspaces. As a consequence, it is useful for description and classification of high-
dimensional data, such as images. The model was compared to mixtures of probabilistic
PCAs on a handwritten digit recognition problem, and was shown to give good results.

In future work, we intend to investigate how to set ν in an optimal way. Experiments
showed that optimising it by maximum likelihood makes the method as a whole less
robust. However, the choice of ν = 2 in the digit recognition experiments, while leading to
good results, is rather arbitrary. Another interesting question is whether it will be feasible
to use different in-subspace and out-of-subspace models, i.e. a Gaussian distribution for
the latent variable �s coupled with a t-distribution for the noise �ε . This might improve
performance of the method as a robust density estimator.

An application of this model might be to learning global manifolds, i.e. for which
a unique mapping F : R

d → R
m exists. This can be achieved, for example, by post-

coordinating the subspaces found [11]. Robustness is especially important for such a
procedure, as a single poorly fitted subspace might result in a global misfit of the data.

Acknowledgements
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