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Abstract 

 
We present a part-based shape descriptor that incorporates both the 
description of the general shape form of each subpart and its geometric 
relationship with other connected parts. Associated with each descriptor is a 
saliency measure that weighs each part’s visual significance. By 
incorporating this saliency measure into the shape matching process, we 
able to discriminate between shape forms as well as take boundary texture 
into consideration when computing shape similarity. This paper also 
describes a multi-resolution pyramidal framework for generating the 
required gradient vector field and vector field disparity map from which the 
shape descriptors, in the form of gradient vector field histograms, are 
derived. Experimental results involving silhouettes images are presented to 
demonstrate the various characteristics of the proposed shape descriptor, 
which includes its invariance to similarity transform and its ability to match 
composite shapes containing boundary noise and texture, limb articulation 
and occlusion.  

 
1  Introduction 
 
Specifying an accurate query in content-based image retrieval systems is a challenging 
task that typically involves the integration of multiple cues like shape, color, texture and 
the spatial relationship between such features. Shape is an important cue as it captures a 
prominent element of an object. However, the description of a shape is difficult to 
specify since humans may perceive two shapes to be similar despite their varying sizes, 
orientations and boundary characteristics. For example, two rabbit shapes are 
recognized to be rabbits despite one being a small smooth-coat and the other a large 
hairy-coat.  The visual forms of these two rabbits are perceptually similar despite the 
differing boundary characteristics. The boundary variations can be viewed as 
undesirable boundary noise or in some cases, informative boundary texture that should 
be incorporated into the shape description. 

There have been many approaches proposed to deal with boundary perturbations. 
Boundary-based methods such as [14] represent shapes by the locations of the maxima 
of its curvature scale space (CSS) image. Shapes are smoothed by selecting the 
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appropriate scale and then matched by shifting the CSS contours so that the major 
maxima of one image overlaps that of the other. In [11], shape boundaries are 
approximated using polygonal curves and are progressively simplified through discrete 
curve evolution based on a novel relevance measure.  The weakness of the boundary-
based approach is that it does not represent the interior of the shape [16] and is 
therefore very sensitive to the spatial reconfigurations of parts and local boundary 
perturbations. 

Shape descriptors based on the medial-axis representation are equally susceptible to 
boundary noise despite incorporating both boundary and region information since many 
skeletonization algorithms produces false branches with even slight boundary 
perturbations. To overcome this problem, [13] proposed a multi-scale shape 
representation called the skeleton-space. It employs a scale-space-driven selection 
scheme, which is able to extract the medial axes representing the most salient shape 
features. Methods based on shock computation [15], [17] are also highly sensitive to 
boundary perturbations. As a result, [15] introduced an edit distance algorithm that is 
able to splice such noise-induced branches with a minimal edit cost by taking into 
account their corresponding change to the boundary model. This effectively transfers 
the de-noising and texture analysis process to the shape similarity computation stage. 
This is in contrast to the scale-space approaches [11], [13], [14], which perform shape 
regularization at the feature extraction stage, resulting in multiple shape descriptors at 
varying scales.   

In this paper we present a part-based shape descriptor that incorporates both the 
description of the general shape form of each subpart as well as the local boundary 
perturbation (boundary texture). Associated with each shape part descriptor is a 
saliency measure that weighs its visual significance based on the proportion of the 
overall shape region it occupies. The saliency measure is incorporated into the shape 
matching process and this results in a shape descriptor that is relative robust to 
boundary noise but at the same time, it takes boundary texture into consideration when 
computing shape similarity. The proposed shape descriptor can be classified as a medial 
axis-based approach but unlike [12], [15], [17], we do not represent shapes by graphs or 
trees. Instead, the shape axes provide a means to partition the shape into subparts. Each 
part is then represented by two 1-D histograms that statistically describe its shape and 
its geometric relationship to other parts in its vicinity. Shape similarity is then computed 
by comparing these histograms. 

 
2  Gradient Vector Field and Disparity Map 
 
2.1 Generating the Gradient Vector Field 
 
Gradient vector fields have been used for extracting medial axis such as the divergence-
based skeleton of [9],[19] and the multi-scale approach of [8]. However, one unique 
requirement of our proposed shape descriptor is to ensure that local boundary 
perturbations will only produce short unconnected shape axes that remain close to the 
boundary.  To achieve this, the gradient vector field in the interior of the shape must be 
derived mainly from the low spatial frequency components of the shape (i.e. the gross 
shape form) and the high spatial frequency components are emphasized on the 
boundary. To meet these requirements, we proposed using multi-resolution pyramids to 
generate the gradient vector field. 



  

For a review of standard pyramid operations such as REDUCE and EXPAND, 
readers can refer to [5]. It is assumed that the input image is a binary silhouette image 
I(x, y). Firstly, a Gaussian pyramid G(l, x, y) of N +1 levels is created by iteratively 
applying the REDUCE operation N times on each consecutive output image, starting 
with I(x, y). From the scalar Gaussian pyramid, we then derived the vectorial Gradient 
pyramid H (l, x, y), which consist of two pyramids H x (l, x, y) and H y (l, x, y) given by 
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The convolution kernels  and  are first-order Gaussian derivatives in the x and 
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Each level Vl of the Gradient Vector Field pyramid, for 0 ≤ l < N, is constructed by 
iteratively applying EXPAND to a proportioned sum of the corresponding level Hl of 
the Gradient pyramid and EXPAND [Vl+1], starting with l = N -1. More formally,  

Vl = α Hl + (1-α) EXPAND [Vl+1]          for 0 ≤ l < N (3) 

where Vl  = Hl  for l = N and the parameter α ∈ [0, 1] determines the smoothness of the 
gradient vector field within the object. A smaller α results in a smoother vector field in 
the interior of the shape (i.e. more low spatial frequency components) [10]. 
 
2.2 The Vector Field Disparity Map 
 
In order to describe a complex shape by decomposing it into suitable parts, the shape 
axes must first be extracted from the gradient vector field. These shape axes can be 
located by detecting locations in the vector field where the local gradient vectors exhibit 
high directional disparity. Given such a disparity map, the shape axes are extracted by 
locating the local maxima in the disparity measure. Extending the idea in [2], the 
normalized Vector Field Disparity pyramid D(l, x, y) is derived from V(l, x, y) where 
each level Dl is defined as 
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The local disparity measure is computed within a weighted locality defined by the 
Gaussian kernel gσD given by DDyx σπσ 2]2/)(exp[ 222 +− . The normalized vector 
field disparity measure Dl (x, y) ∈ [0, 1] gives a value close to 1 in localities of high 
disparity such as at the center of a circle. In order to detect consistent shape axes over 
different scales of a shape (see Fig. 1b), a full resolution vector field disparity map 
M (x, y) is obtained by iteratively applying EXPAND to the sum of Dl and EXPAND 
[Dl+1], starting with at l = N -1 to l = 0, as shown in Fig. 1a. The final summed output is 
divided by N +1 to re-normalise the disparity map such that M (x, y) ∈ [0, 1]. 

 Although the shape axes produced by the described multi-resolution technique 
share many similar characteristics, they are not identical to the shocks of [17] nor the 
skeletons generated using medial axis transform [4]. As can be seen in Fig. 1c, minor 



  

boundary perturbations such as noise and texture result in low saliency part axes that 
remain close to the boundary. As a result, boundary texture, though accounted for in 
our shape descriptor, does not contribute significantly to the shape similarity measure. 
This allows the matching of textured objects that share similar gross shape forms. 
Description of the procedures for shape axes extraction have been omitted due to space 
constraints but further details can be found in [10].  
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Fig. 1. (a) A multi-level integration technique for generating the vector field 
disparity map. (b) The shape axes extracted is relatively consistent with scales spanning 
2 octaves. (c) Extracted shape axes for boundary texture remains close to the boundary, 
resulting in part axes that have lower saliency. Low spatial frequency boundary texture 
like bumps results in higher textural saliency then spiky boundary perturbations. 
 
3 A Part-based Shape Descriptor 
 
There is much evidence that human perception of shapes involves some form of part-
based representation [9], [17]. A more local form of shape description allows for 
recognition that is more robust to occlusion, articulation of limbs and spatial 
rearrangement of parts. In our work, a shape is decomposed into subparts along 
segmented sections (part axes) of the extracted shape axes and each part is described by 
two 1-D histograms derived from the local gradient vector field (see Fig. 2a). 
 
3.1 Part Description and Saliency  
 
Using appropriate morphological operators and skeleton analysis algorithms, the shape 
axes are thinned and segmented at every intersections and junctions into Q continuous 
segments called part axes. With reference to Fig. 2b, let the kth part axis Pk={p i

k }M
i =1  be 

an ordered set of M discrete points starting at one end of a continuous segment and 
ending at the other. Let r1 and rM be the respective radial distances of points p 1

k and p M
k  

to their nearest edge points on the shape boundary. If the ordering of the points {p i
k }M

i =1  
on Pk is such that r1 > rM, then the starting point p 1

k is termed the link node of the part 
axis Pk. 

Each part axis is associated with two normalized gradient vector field histograms. 
They are the segment histogram and the link histogram. The segment histogram Sk 
describes the general shape of the part, such as its length-to-width ratio, its convexity, 
its taper, etc. The link histogram L1

k contains information pertaining to the common 
space that the part axis k shares with other part axes within its vicinity. This relational 
information is very useful in differentiating similar looking protrusions that may be link 



   

to the main shape body at different places and in varying configurations. Link 
histogram L1

k is first constructed by determining the orientation associated with all C 1
k 

discrete image pixels within the circle of radius r1, centered about the start point p 1
k . The 

histogram L1
k with n bins representing the value range [0,2π) cumulates the quantised 

orientation of all C 1
k gradient vectors. The histogram is made rotationally invariant by 

adding a value θ 1
k to all orientation values before cumulation. The angle θ 1

k is derived 
from the orientation of a straight line fitted along all part axis points {p i

k }M
i =1∩C 1

k that 
lie within the circle of radius r1. The start point of the straight line is the end closest to 
p 1

k . The link histogram L1
k is normalized with the value C 1

k. The segment histogram Sk is 
obtained by repeating the procedure described for extracting histogram L1

k but this time 
summing all the computed histograms Li

k for 1 ≤ i ≤ M over the entire length of the part 
axis Pk. More formally, for a part axis Pk, whose locality is defined by a region Uk, its 
segment histogram Sk and its associated normalisation value Wk are given by 

 

∑
=

=
M

i

i
kk LS

1
       and       W       and       U  ∑

=

=
M

i

i
kk C

1
∪
M

i

i
kk C

1=
=

(5) 

 

    
= + + +.. 

Segment 
Histogram 

Link 
Histogram 

 

0  2π  

 

0  2π  

0  2π  

0  2π  

0  2π  

0  2π  

 

 

Pk 

r1 

1 pk 

θk 

rM 

M pk Link node 

Pk+1 

Pk-1 

=link node since r1 > rM 

= all points within circle 1 Ck 

1 pk 

θk is determined by line fitting all points       in circle i pk 

x 

y 

 (a) (b) 

Fig. 2. (a) Decomposition of a rabbit shape into subparts based of its extracted shape 
axes. The gray-shaded area in each part shows the locality Uk, in which the segment and 
link histograms are computed. The size of this locality gives a good indication of the 
part’s saliency. The small circle marking one end of each of the part axis is a link node. 
(b) Part axis Pk and relevant parameters for link node determination, histogram 
normalization and angular compensation for rotation invariance (see text for details). 

 
To have the ability to simultaneously classify gross shape forms and take boundary 

noise and texture into consideration, some form of feature saliency must be 
incorporated into the shape similarity computation. Mismatch of a more salient part 
(e.g. rabbit’s body) should carry a higher penalty then one that is small and perceptually 
insignificant, such as boundary noise or a small protrusion (e.g. rabbit’s hind feet). In 
this context, a salient part is defined as one that covers a large region of the overall 
shape (see Fig. 2a). A useful measure that relates to this definition of saliency is the 
value Wk given in (5). Therefore, if a shape A has QA part axes, then the saliency RA,k  ∈ 
(0, 1] of the part axes PA,k is given by 
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4  Matching Parts and Shapes 
 
It is widely believed that in human perception, the triangular inequality does not hold in 
shape similarity comparison [3], especially in situations where a shape is a composite of 
several different shapes or when parts are occluded. Consequently, the distance between 
two shapes should not be evaluated based on just a metric distance. But from a 
computational viewpoint, a metric-based distance allow part-based descriptors to be 
organized into a database and retrieved through multi-dimensional index structures such 
as M-trees [6], for example. Similar to [3], we propose reconciling the two contrasting 
requirements with the use of two distinct measures called part distance and shape 
distance. The part distance is a metric distance used to measure similarity between two 
parts. On the other hand, the shape distance is a non-metric distance defined as the 
optimal combination of part distances between two shapes and it gives a global shape 
similarity measure that is more consistent with human perception. 

The part distance dp(PA,k , PB,k) between two part axes PA,k and PB,k  extracted from 
shapes A and B is given by the combined χ2 distance between their respective n-bin link 
and segment histograms and is given by 
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where dp(PA,k , PB,k ) ∈ [0,1] and the parameter β ∈ [0,1], determines the relative 
importance attached to the matching of the link and segment histograms. A value of β = 
0.5 will give equal emphasis to both when computing the matching cost. Using (7), the 
part distance matrix PMAB of size QA × QB is obtained by matching all part axes in shape 
A to those in shape B and we assume QA ≤ QB (if not, shapes A and B are reversed). The 
matching costs in matrix PMAB is then weighted by the part saliency of shape A as 
defined in (6), to yield a weighted part distance matrix WMAB given by 

WMAB (i, j) = PMAB (i, j)RA,i        for 1 ≤ i ≤ QA and 1 ≤ j ≤ QB (8) 

The shape distance between two shapes A and B, where QA ≤ QB , is the optimal 
saliency weighted match between all parts in A and a subset of parts in B that results in 
the lowest total matching cost. Given the weighted part distance matrix WMAB, we can 
determine the optimal match by minimizing the total cost of matching subjected to the 
constraint that a one-to-one match exist. Since QA ≤ QB , we can realize a one-to-one 
assignment by adding unit dummy costs to WMAB to turn it into a square matrix. With a 
square WMAB of size QB × QB , we have essentially reduced this task to a matching 
problem for bipartite graphs and this can be solved in O(QB

 3 ) time by the Hungarian 
method [1], [7]. The resulting output from the Hungarian method is a permutation of 
(PA,i , PB,j ) pairs that results in the lowest overall matching cost dh(A, B). The shape 
distance ds(A, B) between shapes A and B is then obtained by removing the added unit 
dummy costs and is given by ds(A, B) =  dh(A, B) – (QB – QA ).  

In order to handle reflection, a mirrored version of shape A must also be matched to 
shape B to see which results in a lower shape distance. To obtain a mirrored version of 
shape A, the link and segment histograms of all its part axes PA,k are reversed. This 
means L1

A,k (i) and SA,k (i) becomes L1
A,k (n− i + 1) and SA,k (n− i + 1) respectively, where n 

is the number of bins in the histograms. Choosing the lower of the two shape distances 
will ensure invariance to the mirror transform. 



  

 

5  Experimental Results 
 
5.1 Geometric Invariance 
 Rabbit 

     ×1      ×½     ×2      ×1 
  Original       90º     −30º     mirror 

Hare 
 Scale:   ×1    ×½    ×2    ×1 
 Rotate: Original    90º   −30º mirror 

Turtle 
     ×1      ×½     ×2      ×1 
  Original       90º     −30º     mirror 

 
Query 

  
 

Match 
#1 
 

#2 

 
#3 

3   18   12    3    4   13   15    4    5    5   16    7  
 
 
 
 
12   18   15   15   15   15   20   13    7   10   24   10 
 
 
 
 
18   29   29   18   15   33   24 20   16   24   32   32 ×  

Fig. 3. Results demonstrating invariance to scaling, rotation and mirror reflection with 
shape distances (×1000) indicated at the bottom right corner of each image. 
 
Fig. 3 shows the closest three matches for each of the twelve 257×257 pixel-sized 
images comprising of three basic shapes (i.e. hare, rabbit and turtle) in various 
orientations and scales (up to two octaves) when each was matched to every other. 
Except for the image marked (×), all shapes were correctly matches to their respective 
shape type. Errors in the gradient vector field histograms are more significant when the 
shape is small due to the reduced number of sampling points making up the histograms. 
It is not surprising that within the best 3 matches, the largest-scaled rabbit was not 
matched to the smallest-scaled rabbit but to a scale (×1) hare because the shape distance 
between the hare and rabbit is small. Note: For all experimental results presented, the 
following parameter settings were adotped: σH =1.0, σD = 1.5, α = 0.8, β = 0.5, n = 24, 
 
5.2 Robustness to Boundary Noise and Texture 
 
Fig. 4 shows the shape axes can be extracted relatively consistently from the multi-
resolution gradient vector field despite high levels of boundary noise.  Skeletons 
extracted from the popular Euclidean distance transform [9], [19] on the other hand, 
give rise to many spurious medial branches. In graph-based shape descriptors like those 
of [12],[15],[17], complicated medial branch pruning and edit distance algorithms must 
be employed to perform shape matching.  

Fig. 5 shows the three closest matches for twelve 129×129 pixel-sized images 
comprising of four basic shapes (i.e. hare, rabbit, pear and candle) with three different 
boundary textures (i.e. smooth, wavy and spiky) when each was matched to every other. 
Only 3 mismatches between closely similar shapes (i.e. hare and rabbit) were observed. 
As seen in Fig. 2c, part axes of lower spatial frequency boundary textures such as large 
wavy bumps have higher saliency values and would therefore contribute more 
significantly to the shape matching score. As a result, the shape distance between a 
wavy-textured rabbit and a wavy-textured hare would be much lower than say a wavy-
rabbit and a spiky-rabbit.  
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Fig. 4. Shape axes and skeletons extracted from the multi-resolution gradient vector 
field (MGVF) and Euclidean distance transform (EDT) when the boundary perturbed in 
the x and y direction by zero-mean Gaussian noise with varying standard deviation σn.  
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14   22   14   10   16   10   25   53   25   22   35   22 
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Fig. 5. Matching results obtained when comparing shapes with boundary texture. 

 
5.3 Shape-based Image Retrieval 
 
In this experiment, an image database of 35 silhouettes images forming 7 different 
classes was queried using 7 test images specially designed to demonstrate various 
features of the proposed shape descriptors. (HS,EP,CP,WS) demonstrates the ability to 
match similar shape classes despite boundary noise. (CR,CD) show the ability to handle 
some amount of occlusion. (HS,GD) show the descriptor’s ability to handle limb 
articulation because the gradient vector field histograms are locally re-oriented along 
the part axes. (GD) demonstrates the ability to do partial matching using a non-metric 
shape distance measure. By relaxing triangular inequality [3], it is possible to retrieve 
multiple simple shapes that make up a composite shape. Notice the dude image 
retrieved in match #4 is the closest matching dude in the database after accounting for 
mirror-reflection, occlusion and articulation of its limbs. 

Fig. 6c shows two image retrieval results using the shape context descriptor [1]. The 
shape context performs well with when the boundary perturbation is small and isolated, 
like with (CP) but performs poorly with significant boundary texture, like with (EP). 
The problem of assigning boundary points under such circumstances is non-trivial 
unless a significant amount of boundary smoothing is applied with the potential risk of 
merging salient parts that are in close spatial proximity. 



  

   Image Hairy Electric  Claw Whale Checker Caged Greeble  
  Name Skater  Plane   Paw Shark  Rabbit   Dog   Dude 

(HS )  (EP )  (CP ) (WS )  (CR )  (CD )  (GD ) 

 
Query 

  
 

Match 
#1 
 

#2 

 
#3 

 
#4 
 

#5 

 
#6 

54   41   78  124   21   54   34  
 
 
 
 
55   52   78  128   26  120   37  
 
 
 
 
55   87   85  139   29  127   61  
 
 
 
 
61   93   87  142   49  133   75  
 
 
 
 
108   98   98  162   52  139   75  
 
 
 
 
142  158  127  164  117  141   76  

 

(b) (a) 

Image database of 35 
silhouette images of size 

129×129 pixels. 
Taken from: [12],15],[17] 

(c) 

   Shape Context  
         Results 
   (CP )    (EP) 

 
Fig. 6. (a) The image database. (b) Six best ordered retrievals for each of 7 queries 
using the MGVF shape descriptor. (c) Six best ordered retrievals for each of 2 queries 
using the shape context descriptor of Belongie et al. [1], with 5 bins for log(r) over the 
range of 0.125α to 2α and 12 equally-spaced radial bins. The matching cost function is 
given by ΣiCi,π(i) and is computed over 100 boundary points. The results were obtained 
with the Matlab code of Serge Belongie at http://www.cs.berkeley.edu/~sjb/shape/. 
 
6  Conclusions 
 
We have presented a novel histogram-based shape descriptor that is derived from the 
gradient vector field of a shape. This part-based shape descriptor encapsulates the 
general shape form of an object, its boundary texture and their respective saliency 
measure. Experimental results show that it is able to discriminate shapes with various 
boundary textures and is also invariant to scaling, rotation and mirror reflection. 
Relatively robust shape-based image retrieval was obtained on a small image database 
of 35 silhouette images using query images that demonstrated the shape descriptor’s 
ability to handle boundary noise, limb articulation, occlusion and partial matching. We 
also proposed a multi-resolution pyramidal technique for extracting the shape 
descriptor. 
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