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Abstract

Recently there has been much attention to MDL and its effectiveness in
automatic shape modelling. One problem of this technique has been the slow
convergence of the optimization step. In this paper the Jacobian of the ob-
jective function is derived. Being able to calculate the Jacobian, a variety
of optimisation techniques can be considered. In this paper we apply steep-
est descent and show that it is more efficient than the previously proposed
Nelder-Mead Simplex optimisation.

1 Introduction
Statistical models of shape [7, 15] have turned out to be a very effective tool in image seg-
mentation and image interpretation. Such models are particularly effective in modelling
objects with limited variability, such as medical organs.

The basic idea behind statistical models of shape is that from a given training set of
known shapes be able to describe new formerly unseen shapes, which still are represen-
tative. The shape is traditionally described using landmarks on the shape boundary. A
major drawback of this approach is that during training a dense correspondence between
the boundaries of the shapes must be known. In practice this has been done by hand. A
process that commonly is both time consuming and error prone.

There has been many suggestions on how to automate the process of building shape
models, or more precise, finding a dense correspondence among a set of shapes [3, 5, 11,
12, 13, 17, 20, 23]. Attempts have been made to locate landmarks on curves using shape
features, such as high curvature [5, 12, 20]. The located features have been used to es-
tablish point correspondences. Local geometric properties, such as geodesics, have been
tested for surfaces [23]. Different ways of parameterising the training shape boundaries
have been proposed [3, 13]. The above cited are not clearly optimal in any sense. Many
have stated the correspondence problem as an optimisation problem [4, 6, 9, 10, 14, 18].
In [18] a measure is proposed and dynamic programming is applied to find the reparam-
eterisation functions. A problem with this method is that it can only handle contours, for
which the shape not changes too much, correctly. In [4] shapes are matched using shape
contexts. In [2] the correspondence is located using proximity measures.

Minimum Description Length or MDL [16] is a paradigm that has been used in many
different applications. In recent papers [8, 9] this paradigm is used to locate a dense
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correspondence between the boundaries of shapes. It is a very successful algorithm. A
problem with this method is, however, that the objective function is not stated explicitly
and that it therfore has been hard to optimise. Nelder-Mead Simplex has been proposed.
This optimisation technique is generally slow. In this paper we apply the theory presented
in [19] and derive the gradient of the description length. We also propose an algorithm to
minimize the description length (DL) using steepest descent.

This paper is organised as follows. In Section 2 the necessary background on shape
models, MDL and calculating the gradient of the singular value decomposition is given.
In Section 3, the gradient of the DL is derived and an algorithm to minimize the DL is
proposed. In Section 4 we show that the convergence rate of the proposed algorithm is
much faster than the effective algorithm proposed in [21] and that the models still are as
accurate.

2 Preliminaries

2.1 Statistical Shape Models
When analysing a set of m similar (typically biological shapes) shapes, it is convenient and
usually effective to describe them using Statistical Shape Models. Each shape is typically
the boundary of some object and is in general represented by a number of landmarks.
After the shapes xi (i = 0, . . . ,m−1) have been aligned and normalized to the same size,
a PCA-analysis is performed. A linear model of the form,

xi = x̄+Pbi, (1)

can now describe the i-th shape in the training set. Here x̄ is the mean shape, the columns
of P describe a set of orthogonal modes of shape variation and bi is the vector of shape
parameters for the i-th shape.

2.2 MDL
Let our shapes be represented by a number of parameterised curves ci : [0,1] 7→ R2. We
want to represent these curves by a linear shape model, as in (1). The problem of finding
a dense correspondence among the shape boundaries is equivalent to reparameterising the
shape boundary curves (to obtain xi = ci ◦ γi), so that xi(t) is the point that corresponds
to x j(t) for all (i, j = 0, ...,m− 1) and t ∈ [0,1]. Here γi : [0,1] 7→ [0,1] represents the
reparameterisation of curve i. The same formulation can be used for, e.g. closed curves
by changing the interval [0,1] to the circle S1. MDL is a method to locate the parameteri-
sation functions γi. The cost in MDL is derived from information theory and is, in simple
words, the effort that is needed to send the model bit by bit. The MDL - principle searches
iteratively for the set of functions γi that gives the cheapest model to transmit. The cost
function makes a trade-off between a model that is general (can represent any instance of
the object), specific (it can only represent valid instances of the object) and compact (it
can represent the variation with as few parameters as possible). Davies and Cootes relate
these ideas to the principle of Occam’s razor: the simplest explanation generalises the
best.

Since the idea of using MDL for landmark determination first was published [8], the
cost function has been refined and tuned. Here we use the simple cost function stated in



[21]

DL = ∑
λ i≥c

(1+ log
λi

c
)+ ∑

λ i<c

λi

c
. (2)

The scalar DL is the description length and is the cost to transmit the model according to
information theory. The scalars λi are the eigenvalues of the linear model in equation
(1) and c is a cut-off constant. Information can only be sent up to a certain degree of
accuracy. The constant c expresses this accuracy. Typically we have set it to c = 10−5,
which corresponds to an acceptable error of 0.3 pixels for shapes with an original radius
of 100 pixels.

There are two important properties of this cost-function. It is more intuitive than those
formerly presented and the derivative is continuous.

2.3 Recapitulation of the SVD
In the rest of the paper, bold letters will be used for denoting vectors and matrices. The
transpose of matrix M is denoted by MT and mi j refers to the (i, j) element of M. The i-th
non-zero element of a diagonal matrix D is referred to by di while Mi designates the i-th
column of matrix M. A basic theorem of linear algebra states that any real or complex
M ×N matrix A can be factored into the product of an M ×M orthogonal matrix U, an
M ×N diagonal matrix S with non-negative diagonal elements (known as the singular
values), and an N ×N orthogonal matrix V.

In other words,

A = USVT =
N

∑
i=1

siUiVi. (3)

The singular values are the square roots of the eigenvalues of the matrix A

2.4 Computing the Jacobian of the singular values
In this Section the preliminaries of computing the Jacobian of the singular values are
given. Here we recapitulate on the theory presented in [19]. For a more mathematical
investigation in this field we recommend Alan Andrew’s work, especially [1].

Employing the definitions of Section 2.3, we are interested in computing the deriva-
tives of the singular values, ∂dk

∂ai j
for every element ai j of the M×N matrix A. Taking the

derivative of equation (3) with respect to ai j gives the following equation

∂A
∂ai j

=
∂U
∂ai j

SVT +U
∂S

∂ai j
VT +US

∂VT

∂ai j
. (4)

Clearly, ∀(k, l) 6= (i, j), ∂akl
∂ai j

= 0, while ∂ai j
∂ai j

= 1. Since U is an orthogonal matrix, we have

UUT = I ⇒
∂UT

∂ai j
U+UT ∂U

∂ai j
= ω i jT

U +ω i j
U = 0, (5)

where ω i j
U is given by

ω i j
U = UT ∂U

∂ai j
. (6)



From Equation (5) it is clear that ω i j
U is an anti-symmetric matrix. Similarly, an anti-

symmetric matrix ω i j
V can be defined for V as

ω i j
V =

∂VT

∂ai j
V. (7)

Notice that ω i j
U and ω i j

V are specific to each differentiation ∂
∂ai j

. By multiplying Equation

(4) by UT and V from left and right respectively, and using Equations (6) and (7), the
following is obtained

U
∂A
∂ai j

V = ω i j
U S+

∂S
∂ai j

+Sω i j
V . (8)

Since ω i j
U and ω i j

V are anti-symmetric matrices, all their diagonal elements are equal to
zero. Recalling that S is a diagonal matrix, it is easy to see that the diagonal elements ω i j

U S
of and ∂S

∂ai j
Sω i j

V are also zero. Thus, Equation (8) yields the derivatives of the singular
values as

∂ sk

∂ai j
= uikv jk. (9)

3 Method
In this Section the gradient of the description length is first derived and then an algorithm
to minimize the description length is proposed.

3.1 Gradient of the Description length
In the proposed implementation each parameterisation function γi has n control nodes.
Control node n on curve m is noted pmn. The parameterisation function values in between
the control nodes are evaluated by linear interpolation.

Differentiation of ∂DL
∂ pmn

(2) gives

∂DL
∂ pmn

= ∑
λk≥c

1
λk

∂λk

∂ pmn
+ ∑

λk<c

1
c

∂λk

∂ pmn
. (10)

Here, the partial derivatives ∂λk
∂ pmn

are needed. Let the m-th row vector of X be the
configuration of landmarks for shape m when Procrustes analysis have been performed.
By applying principal component analysis to X, the shapes can be described with the
linear model in equation (1). A singular value decomposition of X gives X = USVT.

Here V corresponds to P in equation (1) and the diagonal STS gives the eigenvalues
λk.

Now, if xm j is the j-th landmark on shape m and ∂xm j
∂ pmn

is the derivative of the j-th
landmark on shape m with respect to control node pmn then

∂λk

∂ pmn
=

∂ s2
k

∂ pmn
= 2sk

∂ sk

∂ pmn
= 2sk ∑

j

∂ sk

∂xm j

∂xm j

∂ pmn
.



Putting in the results from Equation (9) gives

∂λk

∂ pmn
= 2skumkVm

∂xm j

∂ pmn
. (11)

In this implementation ∂xm j
∂ pmn

is calculated using differential approximation.

3.2 Algorithm
If the gradient of an objective function is known for a specific optimisation problem, it
generally pays off to use more sophisticated optimisation techniques then Nelder-Mead
Simplex or simulated annealing. Here steepest descent is proposed. An overview of the
proposed algorithm is presented below.

Algorithm to minimise the description length

1. INITIALIZATION
Initially the reparameterisation functions are set to arc-length parameterisa-
tion.

2. RESCALE AND ALIGN SHAPES
The curves are aligned to the Procrustes condition

3. CALCULATE DL and dDL
Calculate the gradient of the DL with respect to the parameterisation nodes
pmn

4. UPDATE PARAMETERISATIONS
Search for a local minima in the gradient direction.

(back to 2) until convergence

Algorithm 1: proposed algorithm to minimise description length

1) Initialization Each shape is defined by a number of landmarks. Curves are defined
between the original landmarks using linear interpolation. The curves are fixed during
the whole optimisation. The only things that change are the reparameterisation functions.
The parameterisation functions composed with the fixed curves define new curves. The
landmarks that correspond to the original, fixed landmarks on the new curves are evaluated
with the MDL-criteria.

2) Rescale and align Shapes Each iteration starts by aligning and rescaling all curves
according to the Procrustes alignment. When Procrustes is applied all landmarks are
weighted equally. Therefore the Procrustes perform best if the landmarks are approxi-
mately equally distributed around the shapes. This is important to bear in mind.

3) Calculate DL and dDL In this step the gradient according to Equation (11) is calcu-
lated for all parameterisation nodes. The gradient is evaluated after the Procrustes align-
ment has been performed. There seems to be no problems with this. It could be considered



to also optimise the alignment parameters, instead of aligning the shapes to the Procrustes
condition.

4) Update parameterisations A search for local minima is performed in the gradient
direction. After an estimation of the local minima, all parameterisation nodes are updated
at the same time. Once updated the algorithm starts over at 2) until convergence (roughly
50 iterations).

4 Experimental Validation
In this Section we validate our algorithm on five data sets, see Figure 1.

Hands 23 contours of a hand segmented out semi-automatically from a video stream.
To simplify the segmentation the hand was filmed on a dark background.

Femurs 32 contours of femurs taken from X-rays in the supine projection.

Metacarpal 24 contours of metacarpals (a bone in the hand) deduced from standard
projection radiographs of the hand in the posterior-anterior projection.

Silhouettes The silhouette data set consists of 22 contours of silhouettes of faces. 22
persons were photographed using a digital camera. The silhouettes were then extracted
using an edge detector.

The letter g One data set of 17 curves of the letter g. The curves of the letter g are
sampled using a device for handwriting recognition.

On the five data sets the convergence speed of the proposed algorithm and the Nelder-
Mead optimisation proposed in [21] is compared, see Figure 2. Thodberg’s efficient im-
plementation of MDL [21] has been used for the comparison. MATLAB source code and
test data are available from www.imm.dtu.dk/~hht.

In all simulations, 9 control nodes have been used for the reparameterisations. Each
curve is sampled with 64 landmarks to evaluate the description length at the given param-
eterisation. The initialisations for the Nelder-Mead and the steepest descent algorithm are
identical.

To the left in Figure 2 the convergence rate (in seconds) of the description length using
the two methods is plotted. It can be seen that the proposed optimisation scheme is much
faster for all models.

There is one problem of the MDL approach. If all nodes are moved to approximately
the same point on all curves, a very low description length is achieved. This can be
prevented by using a master example. The master example is not reparameterised during
optimisation. A node cost can also be applied as suggested in [21]. Local minima are
another problem during optimisation. Due to these facts it is necessary to compare the
quality of the models achieved using the two algorithms.
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Figure 1: The mean (green solid line) and the first mode of variation (blue dashed line) of
the optimised models (by the porposed algorithm) is plotted for the five datasets.
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Figure 2: To the left we can see the convergence rate (in seconds) of the description length
for the five models. To the right the mean squared approximation error of the five models
is plotted against number of modes used. This measures the models ability to generalize.



The quality of the models is measured as the mean square error in leave-one-out re-
constructions. The model is built with all but one example and then fitted to the unseen
example. This is shown to the right in Figure 2. The plot shows the mean squared approx-
imation error against the number of modes used. This measures the ability of the model
to represent unseen shape instances of the object.

For all examples but the g:s we get models that generalize better using the steepest
descent algorithm in one third to one forth of the time. For the g:s we run the proposed
algorithm for 100 seconds before its ability to generalize is visibly better than the Nelder-
Mead optimisation.

5 Summary and Conclusions
In this paper we present a more efficient way to minimize the description length. We de-
rive the gradient of the description length and propose to use steepest descent to minimize
the MDL-criteria. We have shown that the objective function is differentiable and can be
written explicitly.

A result of applying steepest descent is that the objective function decreases in each
iteration. The algorithm converges in just a few iterations and it is quite fast.

We have compared the proposed algorithm to the algorithm proposed in [22]. Better
models are achieved for all cases. In four out of the five sets it takes one third to one forth
of the time.
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