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Abstract 

 
This paper describes the multiple object tracking component of an automated 
CCTV surveillance system. The system tracks objects, and alerts the operator 
if unusual trajectories are discovered. Objects are detected by background 
differencing. Low contrast levels can present problems, leading to poor 
object segmentation and fragmentation, particularly on older analogue 
surveillance networks. The model-free tracking algorithm described in this 
paper addresses object fragmentation, and the object merging that occurs 
when proximate objects segment to the same connected component. 

 
1   Introduction 

 
Automated visual surveillance aims to provide an attention-focussing filter to enable an 
operator to make an optimum decision whenever an unusual event occurs [1]. This is 
achieved by directing the operator’s attention only to those events classified as unusual. 
The backbone of such systems typically comprises something like the processing 
pipeline shown in figure 1. 
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Figure 1: Typical image processing pipeline for automated video surveillance 

The blocks outlined in bold are dealt with in this paper, focussing on the object 
tracking module, which must deal with the uncertainty of object segmentation. This 
uncertainty is manifest when moving objects are segmented by background 
differencing, where it is common for the segmented object to fragment due to parts of 
the object matching the greyscale of the background. This problem is exacerbated when 
CCTV system managers wish to implement modern automated surveillance techniques 
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on top of the existing surveillance infrastructure. Older cameras are typically low 
resolution, monochrome, analogue devices with CCD arrays of low dynamic range, 
producing images of low contrast. 

Even complex multimodal background representations cannot successfully segment 
objects if these closely match the background. Typical object tracking algorithms 
employ the Kalman filter or some other predictor-corrector iterative algorithm for 
dealing with uncertainty in the tracking plane [2], [3], [4], [5], [6]. When the uncertainty 
of object segmentation is too great, the tracking algorithm relies on the predictor step, 
and the state of the tracked object is updated using the internal model, rather than the 
observed measurements. It is an implicit assumption in typical background differencing 
and tracking algorithms that segmentation is successful at maintaining objects 
holistically, without fragmentation.  

When objects merge in the binary difference image, predictor-corrector algorithms 
may use partial image evidence to update an object state, but rely more heavily on the 
internal model of object parameters, and do so until such time as the objects separate 
and can be tracked individually. This problem can be overcome, together with other 
phenomena such as occlusion, with an explicit model fit to tracked objects [5], [7], [8]. 

In this paper, a simple, fast object tracking algorithm is described which attempts to 
maintain the morphology of tracked objects, given the evidence provided by the 
segmentation block of the pipeline. The algorithm is intended for use with sparsely 
occupied scenes with low activity levels. This restriction is not prohibitive to the 
objective of the system, as unusual activity (e.g. car crime) typically occurs in otherwise 
quiescent scenes. This algorithm is part of a hybrid novelty detection system [9], [10]. 
The overall philosophy of the system is that it should be self-organising, requiring no 
user defined models of scene elements, object forms or object motion. A self-organising 
map is used to measure the novelty of a vector describing local motion, while a 
hierarchical network classifies the global pattern of  object motion. 

 
2   Summary of Algorithm 

 
The method of choice for moving object segmentation in most tracking algorithms is 
background differencing. Methods based on the calculation of optic flow are 
computationally intensive and use a raw image feature match to maintain a track if the 
object stops moving [11], [12]. The multiple gaussian per pixel representation used in 
[2] is robust, but entails a huge computational cost. To keep the background generator 
computable in real-time on non-specialised hardware, we employ a simple low-pass 
filter [13], [14]. 

The CCTV images are obtained from an analogue, monochrome camera at a 
resolution of 640x480 pixels, with a colour range of 256 grey values. The low-pass filter 
method is able to cope with slow changes in luminance, such as the movement of 
shadows cast by static objects. At time t, the difference and background images are 
calculated as follows: 
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where r and c are the row and column subscripts of a single pixel, δ is the difference 
image, I is the input image, and B is the background image. If the difference δ(r,c) is 
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greater than the threshold, T = 12, the pixel is labelled as foreground, while background 
pixels are modified by expression 2, where β=0.1 and controls the rate of the 
background update. Sufficiently rapid luminance changes cause background 
differencing to fail. To guard against this eventuality, the system counts the total 
number of pixels assigned to the foreground and if this is greater than 50% of the image, 
the entire background image is reset and tracking is restarted. 

Noise is removed by applying a morphological “opening” operator to the difference 
image. The pixels that remain classified as foreground are collected into 4-connected 
components and assigned unique identities. Examples of pedestrians and their 
segmented silhouettes are shown in figure 2. Along with an identity, each object has an 
associated feature vector, the elements of which are area, width, height and a histogram 
of the greyscale distribution of object pixels. This feature vector is used to match 
objects from frame to frame, as described in detail in the following section. (In this 
paper, the term ‘silhouette’ describes a single connected component, of which there are 
three instances in each of the two images in the central column in figure 2). 

 

Figure 2: Examples of partially segmented silhouettes and the objects they delineate 

3   Object Tracking 
 

The object tracker described here is a purely measurement based object-to-silhouette 
matching algorithm with morphological manipulation that deals with uncertainty in the 
segmentation algorithm. The philosophy of the tracking algorithm is motivated by 
general top-down assumptions of the types of unusual behaviour and normal activity 
that the system will have to deal with. 

Based on the surveillance of a typical car park scene, the following assumptions are 
made: (1) Activity of pedestrians is of primary interest; vehicles are tracked but their 
activity will not be passed to the “behaviour” classifier modules. (2) Vehicle crime, the 
main form of novel behaviour that is of interest given the monitored scene, is most 
likely to be carried out by independent pedestrians. (3) Pedestrians entering the scene in 
a group, i.e. with very similar temporal and spatial origins with respect to the tracking 
plane, are likely to have a common origin and destination. Hence, tracking the centroid 
of the group will give a reasonable approximation to individual trajectories within the 
group. (4) Pedestrians with differing spatial and temporal origins may also have 
differing intended destinations. A distinct history for each object should be maintained, 
even if the silhouettes of such objects merge. Based on the above assumptions, the 
tracker attempts to track objects in the form in which they are initially segmented. 
Therefore, the system will try to maintain the tracking of distinct objects, even if their 
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silhouettes merge with those of other objects. This entails the use of a silhouette-
partitioning function to separate merged silhouettes prior to the best-match process. 

The algorithm will also try to maintain the overall morphology of a group, which 
entails the use of a silhouette-combiner which attempts to maintain the track of a group 
as a single entity. This function serves a two-fold purpose. If a group of pedestrians is 
being tracked, a global track on the whole group will be maintained by merging any 
group members who temporarily separate from the group silhouette. On the other hand, 
if the segmentation of an object fails and it becomes fragmented into distinct 
components, the silhouette-combiner will attempt to gather the fragments together until 
the best match to the object is achieved (see figure 2). 

After the background differencing step, the binary image consists of silhouettes, 
where a number of silhouettes may correspond to a single object (fragmentation), or a 
single silhouette may “cover” more than one object (merging). Associated with each 
object and silhouette is a feature vector, fi = [a,w,h,g] where g is a 16 element vector of 
the greyscale histogram covered by silhouette i (figure 3c,d), a is the area, or number of 
pixels making up the silhouette and w and h are the width and height of the minimum 
bounding rectangle (figure 3a). 

 

Figure 3: (a) Object delineated by minimum bounding rectangle calculated from binary 
silhouette (b). (d) Greyscale histogram of segmented object (c) 

Central to the algorithm described below is the concept of “difference” between 
object and silhouette feature vectors. The difference between the feature vectors of 
object Q and silhouette S is defined as 
                     ( ) ( )��

�
��

� −•−−−−= SQSQSQSQSQ wwhhaaSQ ggggd ,,,),(                 (3) 

which is a four element vector comprised of the absolute differences of the area, height 
and width of the object and silhouette and the scalar length of the greyscale histogram 
difference vector. When tracking begins (or after the scene has been empty), there will 
be no objects to which the newly segmented silhouettes can be compared; in this case, 
the algorithm will jump to step 8, where sufficiently large silhouettes that are not 
matched to tracked objects instantiate new entries in the object list. Otherwise, the 
algorithm proceeds by trying to match silhouettes conservatively to existing objects, by 
preferentially matching silhouettes to established objects, then to new objects, and then 
improving the match by resolving silhouette merging and fragmentation. 

Step 1 – Naïve Match: The distances in the image plane between the centroid of 
every object, q, and the centroids of the segmented silhouettes, s, are used to form a 
valid-match matrix, V, based on an arbitrary search radius around position q. The search 
radius, r = 80 pixels, establishes a limit on the number of possible matches that can be 

(a) (b) (c) (d) 
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evaluated by the object-to-silhouette assignment algorithm. V is a matrix of dimension 
{n, m}, where n is the number of tracked objects and m is the number of segmented 
silhouettes. Thus, V is constructed as follows 

                            )1 ,1(     ,   if   1 minjrV ijji ≤≤≤≤≤= sq                                (4) 

where q and s are the vectors describing the position in the image plane of the object j 
and silhouette i. The “cost” of every object-to-silhouette assignment having a non-zero 
entry in matrix V is given by the scalar value 
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where dk(Q,S) is the kth element of the difference vector between object Q and silhouette 
S, and fk(Q) is the feature vector of object Q. The histogram element in the feature 
vector in the denominator of expression (5) is transformed into a scalar value by 
calculating the Euclidean length of the vector. The object feature vector fk(Q), scales the 
elements of the difference vector, assuming that the within population coefficients of 
variation are roughly equal for the separate feature vector elements. 

The match matrix is initialised by assigning silhouettes to objects, on a per-object 
basis, where a single silhouette may be matched to more than one object. It should be 
noted that, in expression 6, an object-to-silhouette assignment is contingent upon a 
corresponding non-zero entry in valid-match matrix V: 
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where a non-zero entry indicates a match between object Qj and silhouette Si. Ideally, 
the naïve match would be enough to unambiguously match objects to the segmented 
silhouettes. The remaining steps of the algorithm are designed to address the errors  that 
may arise from silhouette fragmentation and merging. 

Step 2 – Remove Duplicate Matches: As the naïve match is allocated by choosing 
the lowest cost match per object, there exists the potential for match conflicts, where a 
silhouette is initially matched with more than one object. At this stage, objects are 
allocated to one of two classes, transient or non-transient. Transient objects are those 
that have only been instantiated for one frame – an object must find a silhouette match 
over two frames before it is classified as non-transient. If there are match conflicts, 
silhouette matches to transient object are removed if these overlap with matches to non-
transient objects. This step makes it less likely that false objects will interfere with the 
tracking of real objects. False objects may be attributed to noise or interaction of the 
object with the environment, such as reflections on vehicles. 

Step 3 – Evaluate Possible Merges: Where match conflicts arise between non-
transient objects, the duplicate match may be caused by the merging of silhouettes in 
close proximity. To establish whether a merging event has occurred, the objects with 
conflicting silhouette assignments are combined into a single macro-object, Θ, with a 
single feature vector. If the cost of the macro-object to silhouette match is lower than 
the minimum single object to silhouette match cost, then it is assumed that the 
silhouettes have merged. The cost of the macro-object to silhouette match is given by 
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The cost of the match between macro-object Θ and silhouette S is the summation of the 
elements in the difference vector d(Θ,S) scaled by the corresponding elements in the 
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feature vector f(Qj). Qj is the individual object that best matches the silhouette, the cost 
of this match being c(Qj,S), calculated in step 1. If c(Θ,S) < c(Qj,S), it is assumed that 
the silhouettes of the objects have merged and the conflict is left to be resolved in step 
5. Otherwise, the match to object Qj is retained and the other objects are assigned to 
their next lowest cost match. The reassignment of objects could raise further match 
conflicts between non-transient objects so the algorithm repeats steps 2 and 3 until 
conflicts are removed or found to result from silhouette merging. 

Step 4 – Remove Duplicate Matches: Non-transient object matches modified in the 
last part of step 3 may have been allocated to silhouettes matched to transient objects. 
This is permitted because established objects take priority over transient objects as it is 
possible these may simply be a product of a patch of noise in the last frame. Transient 
object matches that conflict with the relocated non-transient objects are removed. Each 
silhouette allocated to a non-transient object is labelled as “securely matched”, and the 
difference vectors, d(Q,S), recalculated ready for the next step. 

Step 5 – Partition Merged Silhouettes: Here we apply the first of the 
morphological refinement algorithms; the silhouette-partitioning function is applied to 
resolve silhouettes matched to more than one non-transient object. If a duplicated match 
got past step 3, it is likely that the silhouettes of the objects have merged and require 
separating to allow the tracker to maintain a separate track of each object. 

Silhouette Partition Function: Given the (x,y) co-ordinates of each pixel in the 
silhouette, the sum of least squares linear regression line, y=a+bx can be calculated 
directly from the following expressions: 
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where the expressions are applied to all np pixels in the silhouette. 
Each pixel is projected onto the linear regression line giving a histogram of the 

silhouette’s distribution of mass along the line. The silhouette is divided by placing 
partition lines at intervals along the regression line, lr. To calculate the partition points, 
the sizes of the objects (at time t-1) participating in the split are listed in according to 
their relative positions along the x-axis. Given n objects, there will be n-1 partitions p, 
based on the distribution of “mass” among the n objects. If the left-most extent of the 
silhouette projection on to the regression line is the origin, and the right-most extent is 
unity, the partitions pm will lie in the range {0,1}, 
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where pm is partition m, aj is the area of object j and n is the total number of objects 
participating in the split. Moving from left to right along the silhouette regression line 
histogram, the pm ratios are used to place the partition points relative to the total mass of 
the merged silhouette. Each pixel belonging to the silhouette is labelled according to its 
projection onto the regression line (figure 4a). Calculating the partition intervals with 
expression (9) assumes that the overlap between the participating objects is not 
significant. Large overlaps will mean the partitions are offset with an error that 
increases as we progress from left to right along lr, as illustrated in figure 4b. 
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Figure 4: (a) The linear regression line (white) and the resulting partition shown by the 
grey levels mapping the partitioned silhouettes. (b) Heavy mutual occlusion may distort 
partitioned silhouettes (right-most figure) 

Based on the pixel labels, a feature vector is calculated for each sub-silhouette. The 
differences between the feature vectors of the participating objects and the new 
partitioned silhouettes are calculated and the costs evaluated with the expression 
                                                   �

Φ=Φ
k AV

k

k

Q
QQc

)(
),(),(

f
d                                              (10) 

where d(Q,Φ) is the difference between object Q and a partitioned sub-silhouette Φ, and 
the cost of the match is the summation of the scaled elements of the difference vector. 
The object QAV whose feature vector is used to scale the elements of the difference 
vectors is simply an average object calculated from the feature vectors of the objects 
participating in the partition of the silhouette. Among the n objects and n sub-silhouettes 
involved in the silhouette split, the new object to silhouette matches are assigned on a 
greedy lowest-cost basis, with match conflicts obviously not permitted at this stage. 

The object match matrix M is adjusted to accommodate the new silhouettes and 
revised match assignments, and these can take part in the subsequent steps in exactly the 
same way as unmodified silhouettes. 

Step 6 – Merge Fragmented Silhouettes: Here, the possibility of object 
fragmentation is addressed, in which an object may appear as several separate 
silhouettes in the binary difference image. Silhouettes matched to non-transient objects 
are combined with silhouettes lacking a secure match (as defined in step 4) within the 
valid search radius. By combining fragments into a merged silhouette Ψ, a fragmented 
silhouette may be reconstructed, improving the match to the tracked object. The cost of 
a new match is evaluation with the expression 
                                                 �

Ψ
=Ψ

k
k

k

Q
QQc

)(
),(),(

f
d                                                   (11) 

If c(Q,Ψ) < c(Q,S), that is if the merged silhouette Ψ produces a closer match to object 
Q than the unmodified silhouette S, the merge is accepted and the silhouettes are 
combined into a single entry in the silhouette list. This process continues until all 
unallocated silhouette fragments within the valid match radius have been considered. 

Step 7 – Refine Transient Matches: The so-called transient objects may have been 
instantiated over a patch of noise in the previous frame, or they may be genuine new 
objects entering the field of view. A cost-reducing feature combination step is 
performed across these objects as in step 6, i.e. at this stage only transient objects are 
examined and may only be combined with unallocated silhouettes. This priority given to 
persistent objects is one way to reduce the susceptibility of the overall system to short-
lived noise and temporary object fragmentation. 

(a) (b) 
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Step 8 – Update Objects: Given the match matrix M, the object lists are updated. 
Objects without a match are removed and each unassigned silhouette of sufficient size 
instantiates a new object in the list. The size criterion helps to prevent persistent noise, 
which is usually comprised of small image patches, from instantiating an object. 

 
5   Object Based Reference Update 

 
The stationarity of non-pedestrian objects is determined to assist in maintaining a valid 
reference image. When a object is stationary for >16 frames (i.e. 4 seconds at the 4Hz 
sampling interval) the object is inserted into the background image, pedestrians 
typically sway even when standing, so inserted objects are typically parked vehicles. 
The previously determined minimum bounding rectangle of the silhouette is used to 
define the region of the input that is copied to the background. 

Once an object has been inserted into the background, its object list entry is 
transferred to a “recently-inserted-object” list, and foreground objects, i.e. pedestrians, 
can now be tracked as they pass in front of or exit the vehicle. If the event was a “drop-
off”, rather than a parking event, the vehicle will subsequently move away from its 
previously stationary position, leaving a “hole” in the background. The negative object 
will be detected as being stationary, and the centroid can be compared to those in the 
“recently-inserted-object” list. If the distance between the stationary false object 
centroid and a list entry is below a threshold, the object is inserted immediately into the 
background, thereby patching the “hole” in the reference image as quickly as possible.  

This stationary object reference update is useful because of the assumption that the 
system will only submit pedestrian activity to the novelty detection components, thereby 
dictating that tracking localises pedestrians at the expense of tracking other objects. 

 
6   Performance of the Object Tracker 

 
The object tracking algorithm was evaluated with respect to the monitored scene as 
interpreted by a human observer, the overall description of which could be called the 
‘operator perceived activity’ (OPA). The operator looked for discrepancies between 
actual activity and that “perceived” by the tracker. The system was evaluated on 3 days 
of live video from 8:00am to 10:00am, comprising a total of 6 hours, spanning a range 
of activity levels, from peak activity to relatively quiescent periods. The tracker 
performance is shown in table 1. The left side of the table summarises results for 
pedestrian events, and the right shows the vehicle events. From a total of 311 separate 
events, 264 were tracked perfectly, i.e. an accuracy of 84.9% . Figure 5 shows examples 
of fragmented and merged objects disambiguated by the tracker. Instances in which 
there was a discrepancy between the tracker and the OPA are discussed below. 

Correctly tracked events lie down the main diagonal of both sections of the table; 
e.g. there were 120 instances where a single pedestrian was correctly tracked. The 27 
entries where one pedestrian was present but two pedestrians were tracked refers to the 
situation where a pedestrian fragmented and one segment was momentarily tracked as a 
separate pedestrian – this situation was temporary and the extra transient track did not 
interfere with the tracking of the true object. The three instances of complete tracking 
failure (cell {0,1} of table 1 (a)) resulted from excessively poor segmentation producing 
fragments too small to instantiate an object list entry. 
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 (a) Number of Pedestrians 
Tracker 

(b) Number of Vehicles 
Tracker 

 0 1 1 3 0 1 2 3 
0  9 1 0 0 0 0 0 
1 3 120 27 2 1 0 139 1 0 
2 0 3 4 0 2 0 0 0 0 

OPA 

3 0 0 1 1 3 0 0 0 0 

Table 1: Performance of the object tracker, comparing the number of vehicles and 
pedestrians tracked (columns) with the actual events as defined by an operator (rows) 

 

Figure 5: Fragmented (top) and merged (bottom) objects successfully disambiguated 

The 9 instances of pedestrians being tracked when in fact there were none (cell {0,1} 
of table 1 (a)) was due temporary regions generated by phenomena such as reflections 
of pedestrians on vehicle windows, detached shadows from vehicles or elongated 
fragments of vehicles. The single instance where a vehicle was incorrectly tracked (cell 
{1,2} of table 1 (b)) was due to a neatly fragmented vehicle giving rise to two vehicle 
sized objects that were tracked separately. It should be noted that pedestrian activity is 
not submitted to the novelty detection networks until the pedestrian has been tracked 
coherently for approximately 3 seconds, so the entries in the left side of table 1 lying 
above the main diagonal, showing tracking false pedestrians, were not passed on to the 
novelty detection modules. From the point of view of activity classification, significant 
tracking errors were those lying below the main diagonal in the left side of table 1. 
These were instances where the tracker “lost” the track on one or more pedestrians, 
thereby rendering them “invisible” to the novelty detectors. Therefore, considering only 
those table entries lying on or below the main diagonal, out of 132 separate pedestrian 
events, 125 were successfully passed to the classifier stages of the surveillance system, 
giving a tracking accuracy of 94.6%. 

 
7   Discussion 

 
The tracking algorithm attempts to maintain objects in the form in which they were 
instantiated, which is achieved by means of two morphological operators – A merging 
operator deals with silhouette fragmentation and a partitioning function handles 
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silhouette merging events. As shown in table 1, sometimes the fragmentation of objects 
is so poor that a perfect track cannot be maintained. However, this is dealt with by the 
next module in the processing pipeline. Indeed, by accepting the motion data only from 
objects that have been in existence for a given period, the novelty detection modules [9], 
[10], can prevent false transient objects from generating alarms. 

The algorithm is able to track poorly segmented objects on the basis of form only, 
and no prior models of size, shape or texture are used. This is consistent with the overall 
strategy of a self-organising system, were objects are tracked and their behaviour is 
classified without a priori knowledge built into the system. The algorithm is extremely 
fast, as the elements used during the match process are simple macroscopic features of 
silhouette area, width, height and greyscale histogram. 
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