

A Fast Model-Free Morphology-
Based Object Tracking Algorithm

Jonathan Owensa, Andrew Hunterb & Eric Fletchera
aSchool of Computing & Technology

University of Sunderland, UK
jonathan.owens@sunderland.ac.uk

bDepartment of Computer Science
Durham University, UK

andrew1.hunter@durham.ac.uk

Abstract

This paper describes the multiple object tracking component of an automated
CCTV surveillance system. The system tracks objects, and alerts the operator
if unusual trajectories are discovered. Objects are detected by background
differencing. Low contrast levels can present problems, leading to poor
object segmentation and fragmentation, particularly on older analogue
surveillance networks. The model-free tracking algorithm described in this
paper addresses object fragmentation, and the object merging that occurs
when proximate objects segment to the same connected component.

1 Introduction

Automated visual surveillance aims to provide an attention-focussing filter to enable an
operator to make an optimum decision whenever an unusual event occurs [1]. This is
achieved by directing the operator’s attention only to those events classified as unusual.
The backbone of such systems typically comprises something like the processing
pipeline shown in figure 1.

Image
Acquisition

Object
Segmentation

Object
Tracking

Object
Classification

Behaviour
Classification

Scene
Description

Figure 1: Typical image processing pipeline for automated video surveillance

The blocks outlined in bold are dealt with in this paper, focussing on the object
tracking module, which must deal with the uncertainty of object segmentation. This
uncertainty is manifest when moving objects are segmented by background
differencing, where it is common for the segmented object to fragment due to parts of
the object matching the greyscale of the background. This problem is exacerbated when
CCTV system managers wish to implement modern automated surveillance techniques

767

BMVC 2002 doi:10.5244/C.16.75

on top of the existing surveillance infrastructure. Older cameras are typically low
resolution, monochrome, analogue devices with CCD arrays of low dynamic range,
producing images of low contrast.

Even complex multimodal background representations cannot successfully segment
objects if these closely match the background. Typical object tracking algorithms
employ the Kalman filter or some other predictor-corrector iterative algorithm for
dealing with uncertainty in the tracking plane [2], [3], [4], [5], [6]. When the uncertainty
of object segmentation is too great, the tracking algorithm relies on the predictor step,
and the state of the tracked object is updated using the internal model, rather than the
observed measurements. It is an implicit assumption in typical background differencing
and tracking algorithms that segmentation is successful at maintaining objects
holistically, without fragmentation.

When objects merge in the binary difference image, predictor-corrector algorithms
may use partial image evidence to update an object state, but rely more heavily on the
internal model of object parameters, and do so until such time as the objects separate
and can be tracked individually. This problem can be overcome, together with other
phenomena such as occlusion, with an explicit model fit to tracked objects [5], [7], [8].

In this paper, a simple, fast object tracking algorithm is described which attempts to
maintain the morphology of tracked objects, given the evidence provided by the
segmentation block of the pipeline. The algorithm is intended for use with sparsely
occupied scenes with low activity levels. This restriction is not prohibitive to the
objective of the system, as unusual activity (e.g. car crime) typically occurs in otherwise
quiescent scenes. This algorithm is part of a hybrid novelty detection system [9], [10].
The overall philosophy of the system is that it should be self-organising, requiring no
user defined models of scene elements, object forms or object motion. A self-organising
map is used to measure the novelty of a vector describing local motion, while a
hierarchical network classifies the global pattern of object motion.

2 Summary of Algorithm

The method of choice for moving object segmentation in most tracking algorithms is
background differencing. Methods based on the calculation of optic flow are
computationally intensive and use a raw image feature match to maintain a track if the
object stops moving [11], [12]. The multiple gaussian per pixel representation used in
[2] is robust, but entails a huge computational cost. To keep the background generator
computable in real-time on non-specialised hardware, we employ a simple low-pass
filter [13], [14].

The CCTV images are obtained from an analogue, monochrome camera at a
resolution of 640x480 pixels, with a colour range of 256 grey values. The low-pass filter
method is able to cope with slow changes in luminance, such as the movement of
shadows cast by static objects. At time t, the difference and background images are
calculated as follows:

�
�
� >−

=
otherwise 0

),(),(1
),(

TcrBcrI
crδ (1)

)1()1()()(−×−+×= tBtItB ββ if 0),(=crδ (2)
where r and c are the row and column subscripts of a single pixel, δ is the difference
image, I is the input image, and B is the background image. If the difference δ(r,c) is

768

greater than the threshold, T = 12, the pixel is labelled as foreground, while background
pixels are modified by expression 2, where β=0.1 and controls the rate of the
background update. Sufficiently rapid luminance changes cause background
differencing to fail. To guard against this eventuality, the system counts the total
number of pixels assigned to the foreground and if this is greater than 50% of the image,
the entire background image is reset and tracking is restarted.

Noise is removed by applying a morphological “opening” operator to the difference
image. The pixels that remain classified as foreground are collected into 4-connected
components and assigned unique identities. Examples of pedestrians and their
segmented silhouettes are shown in figure 2. Along with an identity, each object has an
associated feature vector, the elements of which are area, width, height and a histogram
of the greyscale distribution of object pixels. This feature vector is used to match
objects from frame to frame, as described in detail in the following section. (In this
paper, the term ‘silhouette’ describes a single connected component, of which there are
three instances in each of the two images in the central column in figure 2).

Figure 2: Examples of partially segmented silhouettes and the objects they delineate

3 Object Tracking

The object tracker described here is a purely measurement based object-to-silhouette
matching algorithm with morphological manipulation that deals with uncertainty in the
segmentation algorithm. The philosophy of the tracking algorithm is motivated by
general top-down assumptions of the types of unusual behaviour and normal activity
that the system will have to deal with.

Based on the surveillance of a typical car park scene, the following assumptions are
made: (1) Activity of pedestrians is of primary interest; vehicles are tracked but their
activity will not be passed to the “behaviour” classifier modules. (2) Vehicle crime, the
main form of novel behaviour that is of interest given the monitored scene, is most
likely to be carried out by independent pedestrians. (3) Pedestrians entering the scene in
a group, i.e. with very similar temporal and spatial origins with respect to the tracking
plane, are likely to have a common origin and destination. Hence, tracking the centroid
of the group will give a reasonable approximation to individual trajectories within the
group. (4) Pedestrians with differing spatial and temporal origins may also have
differing intended destinations. A distinct history for each object should be maintained,
even if the silhouettes of such objects merge. Based on the above assumptions, the
tracker attempts to track objects in the form in which they are initially segmented.
Therefore, the system will try to maintain the tracking of distinct objects, even if their

769

silhouettes merge with those of other objects. This entails the use of a silhouette-
partitioning function to separate merged silhouettes prior to the best-match process.

The algorithm will also try to maintain the overall morphology of a group, which
entails the use of a silhouette-combiner which attempts to maintain the track of a group
as a single entity. This function serves a two-fold purpose. If a group of pedestrians is
being tracked, a global track on the whole group will be maintained by merging any
group members who temporarily separate from the group silhouette. On the other hand,
if the segmentation of an object fails and it becomes fragmented into distinct
components, the silhouette-combiner will attempt to gather the fragments together until
the best match to the object is achieved (see figure 2).

After the background differencing step, the binary image consists of silhouettes,
where a number of silhouettes may correspond to a single object (fragmentation), or a
single silhouette may “cover” more than one object (merging). Associated with each
object and silhouette is a feature vector, fi = [a,w,h,g] where g is a 16 element vector of
the greyscale histogram covered by silhouette i (figure 3c,d), a is the area, or number of
pixels making up the silhouette and w and h are the width and height of the minimum
bounding rectangle (figure 3a).

Figure 3: (a) Object delineated by minimum bounding rectangle calculated from binary
silhouette (b). (d) Greyscale histogram of segmented object (c)

Central to the algorithm described below is the concept of “difference” between
object and silhouette feature vectors. The difference between the feature vectors of
object Q and silhouette S is defined as
 () ()��

�
��

� −•−−−−= SQSQSQSQSQ wwhhaaSQ ggggd ,,,),((3)

which is a four element vector comprised of the absolute differences of the area, height
and width of the object and silhouette and the scalar length of the greyscale histogram
difference vector. When tracking begins (or after the scene has been empty), there will
be no objects to which the newly segmented silhouettes can be compared; in this case,
the algorithm will jump to step 8, where sufficiently large silhouettes that are not
matched to tracked objects instantiate new entries in the object list. Otherwise, the
algorithm proceeds by trying to match silhouettes conservatively to existing objects, by
preferentially matching silhouettes to established objects, then to new objects, and then
improving the match by resolving silhouette merging and fragmentation.

Step 1 – Naïve Match: The distances in the image plane between the centroid of
every object, q, and the centroids of the segmented silhouettes, s, are used to form a
valid-match matrix, V, based on an arbitrary search radius around position q. The search
radius, r = 80 pixels, establishes a limit on the number of possible matches that can be

(a) (b) (c) (d)

770

evaluated by the object-to-silhouette assignment algorithm. V is a matrix of dimension
{n, m}, where n is the number of tracked objects and m is the number of segmented
silhouettes. Thus, V is constructed as follows

)1 ,1(, if 1 minjrV ijji ≤≤≤≤≤= sq (4)

where q and s are the vectors describing the position in the image plane of the object j
and silhouette i. The “cost” of every object-to-silhouette assignment having a non-zero
entry in matrix V is given by the scalar value

 �=
k

k

k

Q
SQSQc
)(

),(),(
f

d (5)

where dk(Q,S) is the kth element of the difference vector between object Q and silhouette
S, and fk(Q) is the feature vector of object Q. The histogram element in the feature
vector in the denominator of expression (5) is transformed into a scalar value by
calculating the Euclidean length of the vector. The object feature vector fk(Q), scales the
elements of the difference vector, assuming that the within population coefficients of
variation are roughly equal for the separate feature vector elements.

The match matrix is initialised by assigning silhouettes to objects, on a per-object
basis, where a single silhouette may be matched to more than one object. It should be
noted that, in expression 6, an object-to-silhouette assignment is contingent upon a
corresponding non-zero entry in valid-match matrix V:

)1 ,1(),(minarg where minjSQcvVM ijijvjv ≤≤≤≤
�
�
�

�
�
�== (6)

where a non-zero entry indicates a match between object Qj and silhouette Si. Ideally,
the naïve match would be enough to unambiguously match objects to the segmented
silhouettes. The remaining steps of the algorithm are designed to address the errors that
may arise from silhouette fragmentation and merging.

Step 2 – Remove Duplicate Matches: As the naïve match is allocated by choosing
the lowest cost match per object, there exists the potential for match conflicts, where a
silhouette is initially matched with more than one object. At this stage, objects are
allocated to one of two classes, transient or non-transient. Transient objects are those
that have only been instantiated for one frame – an object must find a silhouette match
over two frames before it is classified as non-transient. If there are match conflicts,
silhouette matches to transient object are removed if these overlap with matches to non-
transient objects. This step makes it less likely that false objects will interfere with the
tracking of real objects. False objects may be attributed to noise or interaction of the
object with the environment, such as reflections on vehicles.

Step 3 – Evaluate Possible Merges: Where match conflicts arise between non-
transient objects, the duplicate match may be caused by the merging of silhouettes in
close proximity. To establish whether a merging event has occurred, the objects with
conflicting silhouette assignments are combined into a single macro-object, Θ, with a
single feature vector. If the cost of the macro-object to silhouette match is lower than
the minimum single object to silhouette match cost, then it is assumed that the
silhouettes have merged. The cost of the macro-object to silhouette match is given by

 �
Θ=Θ

k
jk

k

Q
SSc
)(
),(),(

f
d

�
�
�

�
�
�=),(minarg where ivv SQcj (7)

The cost of the match between macro-object Θ and silhouette S is the summation of the
elements in the difference vector d(Θ,S) scaled by the corresponding elements in the

771

feature vector f(Qj). Qj is the individual object that best matches the silhouette, the cost
of this match being c(Qj,S), calculated in step 1. If c(Θ,S) < c(Qj,S), it is assumed that
the silhouettes of the objects have merged and the conflict is left to be resolved in step
5. Otherwise, the match to object Qj is retained and the other objects are assigned to
their next lowest cost match. The reassignment of objects could raise further match
conflicts between non-transient objects so the algorithm repeats steps 2 and 3 until
conflicts are removed or found to result from silhouette merging.

Step 4 – Remove Duplicate Matches: Non-transient object matches modified in the
last part of step 3 may have been allocated to silhouettes matched to transient objects.
This is permitted because established objects take priority over transient objects as it is
possible these may simply be a product of a patch of noise in the last frame. Transient
object matches that conflict with the relocated non-transient objects are removed. Each
silhouette allocated to a non-transient object is labelled as “securely matched”, and the
difference vectors, d(Q,S), recalculated ready for the next step.

Step 5 – Partition Merged Silhouettes: Here we apply the first of the
morphological refinement algorithms; the silhouette-partitioning function is applied to
resolve silhouettes matched to more than one non-transient object. If a duplicated match
got past step 3, it is likely that the silhouettes of the objects have merged and require
separating to allow the tracker to maintain a separate track of each object.

Silhouette Partition Function: Given the (x,y) co-ordinates of each pixel in the
silhouette, the sum of least squares linear regression line, y=a+bx can be calculated
directly from the following expressions:

,2

2

2

�
�
�

�
�
�−

�
�
�

�
�
�
�
�
�

�
�
�−�

�

�
�
�

�
�
�
�

�
�
�

=

��

����

xxn

xyxxy
a

p

2

2
�
�
�

�
�
�−

�
�
�

�
�
�
�
�
�

�
�
�−

=

��

���

xxn

yxxyn
b

p

p (8)

where the expressions are applied to all np pixels in the silhouette.
Each pixel is projected onto the linear regression line giving a histogram of the

silhouette’s distribution of mass along the line. The silhouette is divided by placing
partition lines at intervals along the regression line, lr. To calculate the partition points,
the sizes of the objects (at time t-1) participating in the split are listed in according to
their relative positions along the x-axis. Given n objects, there will be n-1 partitions p,
based on the distribution of “mass” among the n objects. If the left-most extent of the
silhouette projection on to the regression line is the origin, and the right-most extent is
unity, the partitions pm will lie in the range {0,1},

)11(

1

1 −≤≤=
�

�

=

= nm
a

a
p n

k
k

m

j
j

m

 (9)

where pm is partition m, aj is the area of object j and n is the total number of objects
participating in the split. Moving from left to right along the silhouette regression line
histogram, the pm ratios are used to place the partition points relative to the total mass of
the merged silhouette. Each pixel belonging to the silhouette is labelled according to its
projection onto the regression line (figure 4a). Calculating the partition intervals with
expression (9) assumes that the overlap between the participating objects is not
significant. Large overlaps will mean the partitions are offset with an error that
increases as we progress from left to right along lr, as illustrated in figure 4b.

772

Figure 4: (a) The linear regression line (white) and the resulting partition shown by the
grey levels mapping the partitioned silhouettes. (b) Heavy mutual occlusion may distort
partitioned silhouettes (right-most figure)

Based on the pixel labels, a feature vector is calculated for each sub-silhouette. The
differences between the feature vectors of the participating objects and the new
partitioned silhouettes are calculated and the costs evaluated with the expression
 �

Φ=Φ
k AV

k

k

Q
QQc

)(
),(),(

f
d (10)

where d(Q,Φ) is the difference between object Q and a partitioned sub-silhouette Φ, and
the cost of the match is the summation of the scaled elements of the difference vector.
The object QAV whose feature vector is used to scale the elements of the difference
vectors is simply an average object calculated from the feature vectors of the objects
participating in the partition of the silhouette. Among the n objects and n sub-silhouettes
involved in the silhouette split, the new object to silhouette matches are assigned on a
greedy lowest-cost basis, with match conflicts obviously not permitted at this stage.

The object match matrix M is adjusted to accommodate the new silhouettes and
revised match assignments, and these can take part in the subsequent steps in exactly the
same way as unmodified silhouettes.

Step 6 – Merge Fragmented Silhouettes: Here, the possibility of object
fragmentation is addressed, in which an object may appear as several separate
silhouettes in the binary difference image. Silhouettes matched to non-transient objects
are combined with silhouettes lacking a secure match (as defined in step 4) within the
valid search radius. By combining fragments into a merged silhouette Ψ, a fragmented
silhouette may be reconstructed, improving the match to the tracked object. The cost of
a new match is evaluation with the expression
 �

Ψ
=Ψ

k
k

k

Q
QQc

)(
),(),(

f
d (11)

If c(Q,Ψ) < c(Q,S), that is if the merged silhouette Ψ produces a closer match to object
Q than the unmodified silhouette S, the merge is accepted and the silhouettes are
combined into a single entry in the silhouette list. This process continues until all
unallocated silhouette fragments within the valid match radius have been considered.

Step 7 – Refine Transient Matches: The so-called transient objects may have been
instantiated over a patch of noise in the previous frame, or they may be genuine new
objects entering the field of view. A cost-reducing feature combination step is
performed across these objects as in step 6, i.e. at this stage only transient objects are
examined and may only be combined with unallocated silhouettes. This priority given to
persistent objects is one way to reduce the susceptibility of the overall system to short-
lived noise and temporary object fragmentation.

(a) (b)

773

Step 8 – Update Objects: Given the match matrix M, the object lists are updated.
Objects without a match are removed and each unassigned silhouette of sufficient size
instantiates a new object in the list. The size criterion helps to prevent persistent noise,
which is usually comprised of small image patches, from instantiating an object.

5 Object Based Reference Update

The stationarity of non-pedestrian objects is determined to assist in maintaining a valid
reference image. When a object is stationary for >16 frames (i.e. 4 seconds at the 4Hz
sampling interval) the object is inserted into the background image, pedestrians
typically sway even when standing, so inserted objects are typically parked vehicles.
The previously determined minimum bounding rectangle of the silhouette is used to
define the region of the input that is copied to the background.

Once an object has been inserted into the background, its object list entry is
transferred to a “recently-inserted-object” list, and foreground objects, i.e. pedestrians,
can now be tracked as they pass in front of or exit the vehicle. If the event was a “drop-
off”, rather than a parking event, the vehicle will subsequently move away from its
previously stationary position, leaving a “hole” in the background. The negative object
will be detected as being stationary, and the centroid can be compared to those in the
“recently-inserted-object” list. If the distance between the stationary false object
centroid and a list entry is below a threshold, the object is inserted immediately into the
background, thereby patching the “hole” in the reference image as quickly as possible.

This stationary object reference update is useful because of the assumption that the
system will only submit pedestrian activity to the novelty detection components, thereby
dictating that tracking localises pedestrians at the expense of tracking other objects.

6 Performance of the Object Tracker

The object tracking algorithm was evaluated with respect to the monitored scene as
interpreted by a human observer, the overall description of which could be called the
‘operator perceived activity’ (OPA). The operator looked for discrepancies between
actual activity and that “perceived” by the tracker. The system was evaluated on 3 days
of live video from 8:00am to 10:00am, comprising a total of 6 hours, spanning a range
of activity levels, from peak activity to relatively quiescent periods. The tracker
performance is shown in table 1. The left side of the table summarises results for
pedestrian events, and the right shows the vehicle events. From a total of 311 separate
events, 264 were tracked perfectly, i.e. an accuracy of 84.9% . Figure 5 shows examples
of fragmented and merged objects disambiguated by the tracker. Instances in which
there was a discrepancy between the tracker and the OPA are discussed below.

Correctly tracked events lie down the main diagonal of both sections of the table;
e.g. there were 120 instances where a single pedestrian was correctly tracked. The 27
entries where one pedestrian was present but two pedestrians were tracked refers to the
situation where a pedestrian fragmented and one segment was momentarily tracked as a
separate pedestrian – this situation was temporary and the extra transient track did not
interfere with the tracking of the true object. The three instances of complete tracking
failure (cell {0,1} of table 1 (a)) resulted from excessively poor segmentation producing
fragments too small to instantiate an object list entry.

774

 (a) Number of Pedestrians
Tracker

(b) Number of Vehicles
Tracker

 0 1 1 3 0 1 2 3
0 9 1 0 0 0 0 0
1 3 120 27 2 1 0 139 1 0
2 0 3 4 0 2 0 0 0 0

OPA

3 0 0 1 1 3 0 0 0 0

Table 1: Performance of the object tracker, comparing the number of vehicles and
pedestrians tracked (columns) with the actual events as defined by an operator (rows)

Figure 5: Fragmented (top) and merged (bottom) objects successfully disambiguated

The 9 instances of pedestrians being tracked when in fact there were none (cell {0,1}
of table 1 (a)) was due temporary regions generated by phenomena such as reflections
of pedestrians on vehicle windows, detached shadows from vehicles or elongated
fragments of vehicles. The single instance where a vehicle was incorrectly tracked (cell
{1,2} of table 1 (b)) was due to a neatly fragmented vehicle giving rise to two vehicle
sized objects that were tracked separately. It should be noted that pedestrian activity is
not submitted to the novelty detection networks until the pedestrian has been tracked
coherently for approximately 3 seconds, so the entries in the left side of table 1 lying
above the main diagonal, showing tracking false pedestrians, were not passed on to the
novelty detection modules. From the point of view of activity classification, significant
tracking errors were those lying below the main diagonal in the left side of table 1.
These were instances where the tracker “lost” the track on one or more pedestrians,
thereby rendering them “invisible” to the novelty detectors. Therefore, considering only
those table entries lying on or below the main diagonal, out of 132 separate pedestrian
events, 125 were successfully passed to the classifier stages of the surveillance system,
giving a tracking accuracy of 94.6%.

7 Discussion

The tracking algorithm attempts to maintain objects in the form in which they were
instantiated, which is achieved by means of two morphological operators – A merging
operator deals with silhouette fragmentation and a partitioning function handles

775

silhouette merging events. As shown in table 1, sometimes the fragmentation of objects
is so poor that a perfect track cannot be maintained. However, this is dealt with by the
next module in the processing pipeline. Indeed, by accepting the motion data only from
objects that have been in existence for a given period, the novelty detection modules [9],
[10], can prevent false transient objects from generating alarms.

The algorithm is able to track poorly segmented objects on the basis of form only,
and no prior models of size, shape or texture are used. This is consistent with the overall
strategy of a self-organising system, were objects are tracked and their behaviour is
classified without a priori knowledge built into the system. The algorithm is extremely
fast, as the elements used during the match process are simple macroscopic features of
silhouette area, width, height and greyscale histogram.

8 References

[1] Foresti, G.L., Mähönen, P., Regazzoni, C.S. (eds): Multimedia Video-Based
Surveillance Systems – Requirements, Issues and Solutions. Kluwer Academic
Publishers
[2] Stauffer, C., Grimson, W.E.L.: Learning Patterns of Activity Using Real-Time
Tracking. IEEE Trans. PAMI, Vol. 22, No. 8 (2000)
[3] Foresti, G.L.: A Real-Time System for Video Surveillance of Unattended Outdoor
Environments. IEEE Trans. Circuits and Systems for Vid Tech, Vol. 8, No. 6 (1998)
[4] Foresti, G.L., Roli, F.: Learning and Classification of Suspicious Events for
Advanced Visual-Based Surveillance. In: Foresti, G.L., Mähönen, P., Regazzoni, C.S.
(eds): Multimedia Video-Based Surveillance Systems: Requirements. Kluwer Academic
Publishers
[5] Remagnino, P., Baumberg, A., Grove, T., Hogg, D., Tan, T., Worral, A., Baker, K.:
An Integrated Traffic and Pedestrian Model-Based Vision System. Proc. BMVC (1997)
[6] Rasmussen, C., Hager, G.D.: Probabilistic Data Association Methods for Tracking
Complex Visual Objects. IEEE Trans. PAMI, Vol. 23, No. 6 (2001)
[7] Ferryman, J.M., Worral, A.D., Sullivan, G.D., Baker, K.D.: Visual Surveillance
Using Deformable Models of Vehicles. Robotics and Autonomous Systems, Vol. 19,
No. 3-4 (1997)
[8] Pece, A., Worral, A.: A Statistically-based Newton Method for Pose Refinement.
Image and Vision Computing, Vol. 16, No. 8 (1998)
[9] Owens, J., Hunter, A.: Application of the Self-Organising Map to Trajectory
Classification. IEEE Third International Workshop on Visual Surveillance (2000)
[10] Owens, J., Hunter, A., Fletcher, E.: Novelty Detection in Video Surveillance Using
Hierarchical Neural Networks. Proc. ICANN (to appear) (2002)
[11] Boghossian, B.A., Velastin, S.A.: Image Processing System for Pedestrian
Monitoring Using Neural Classification of Normal Motion Patterns. Measurement and
Control, Vol. 32, No. 9 (1999)
[12] Medioni, G., Cohen, I., Bremond, F., Hongeng, S., Nevatia, R.: Event Detection
and Analysis from Video Streams. IEEE Trans. PAMI, Vol. 23, No. 8 (2001)
[13] Makarov, A.: Comparison of Background Extraction Based Intrusion Detection
Algorithms. IEEE Int. Conf. Image Processing (1996)
[14] Kehtarnavaz, N., Rajkotwala, F.: Real-Time Vision-Based Detection of Waiting
Pedestrians. Real-Time Imaging, Vol. 3 (1997)

776

