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Abstract

A new method of translational image registration is presented: orientation
correlation. The method is fast, exhaustive, statistically robust, and illumina-
tion invariant. No existing method has all of these properties. A modification
that is particularly well suited to matching images of differing modalities,
squared orientation correlation, is also given.

Orientation correlation works by correlating orientation images. Each
pixel in a orientation image is a complex number that represents the orien-
tation of intensity gradient. This representation is invariant to illumination
change. Angles of gradient orientation are matched. Andrews robust kernel
function is applied to angle differences. Through the use of correlation the
method is exhaustive. The method is fast as the correlation can be computed
using Fast Fourier Transforms.

1 Introduction

Image registration, or matching, is the process of aligning two or more images [7]. The
topic has a wide range of applications, including: super-resolution, face detection, video
coding, medical imaging, database classification, mosaicking, and post-production video
effects. In selecting a suitable image registration method one must consider, i) the nature
of the transformation aligning the images, ii) how to evaluate a given transformation.

Transformations can be parametric, e.g. translational, isometric, similarity, affine, pro-
jective, or polynomial; or non-parametric, e.g. elastic deformations or thin-plate splines
[11]. Orientation correlation finds translational transformations. This is a prominent
transformation in many of the above applications. Applications which require a more
complex transformation may still use a translational model as the first stage of the esti-
mation process [1, 8].

For evaluation of a transformation two matching methodologies are prevalent in the
literature; area-basedmethods (also known as direct methods) and feature-basedmethods.
Area-based methods match measurable image quantities, e.g. brightness [16] or phase
[17], [12]. Feature-based methods match features extracted from the images, e.g. corners
[14], lines [9], or junctions [8]. Orientation correlation matches the feature of gradient
orientation for each pixel. Orientation correlation is a feature based method with many of
the advantageous properties of area-based methods.

With the transformation selected and method of evaluating a transformation defined,
image registration becomes an optimisation task to find the best transformation param-
eters. In the case of a translational transformation, correlation (more exactly cross-
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correlation) has a unique ability to accomplish an exhaustive search quickly [2]. Correla-
tion avoids the fundamental weakness of optimisation techniques; no initial “best guess”
of the correct registration is required. Matching with correlation does not require a-priori
knowledge. Since the search is exhaustive, local minima are not a problem for correlation-
based methods.

The Fast Fourier Transform (FFT) [24] allows fast correlation of digital signals. Cor-
relation using the FFT was first applied to image registration by Anuta [2]. A variety
of improvements to correlation have been proposed over the years [17, 19, 22]. These
have improved correlation results and addressed issues such as illumination invariance.
Comparative studies have been made [3, 20]. In the fields of computer vision and image
processing robustness is important. While some of these methods claim to be robust all
are based on the square error kernel. Unlike orientation correlation they are not statisti-
cally robust.

Huber defines robust statistics as “ � � � insensitivity to small deviations from the as-
sumptions.” [15]. Note that “small” may imply small deviations for all data (e.g. Gaussian
noise) or large deviations for a small quantity of data (outliers). In relation to image reg-
istration, robustness implies correct registration in the presence of effects such as: noise,
occlusion, revealed regions, new objects, and highlights; in general any effect that may
cause deviation from a perfect match. A squared error kernel excessively weights out-
liers. Standard correlation methods do not have a mechanism to handle outliers caused by
mismatches at the correct registration.

Robust statistics have been applied to image registration [18], and the related fields
of motion estimation [6, 21] and optic flow [4, 5]. Median, used in [4], is robust but
computationally expensive. The most prevalent robust method in the literature is the
solution of M-estimators with Iteratively Reweighted Least Squares [5, 18, 21]. None of
the existing robust methods are fast and exhaustive.

The purpose of this paper is to present orientation correlation. Orientation correla-
tion is a method of translatory image matching which is: statistically robust, illumination
invariant, exhaustive, and fast. The method derives statistical robustness by using An-
drews’ robust M-estimator [15]. The method is illumination invariant as the matching is
performed on orientation of image intensity gradient. The method derives its exhaustive
property from the use of correlation. Speed is derived from computing correlation with
FFTs.

The remainder of the paper is arranged as follows. The method of orientation correla-
tion is presented in Section 2. In Section 3 the method is analysed and its aforementioned
properties proven. Section 4 experimentally demonstrates the advantages of orientation
correlation in the applications of video coding and multimodal microscopy image regis-
tration. Conclusions are drawn in Section 5.

2 Method

This section details our orientation correlation method. Sufficient detail is given for the
results presented in Section 4 to be reproduced. Analysis highlighting the properties of
the method is in Section 3.

We wish to match discrete images � and �. Images are indexed using ��� ��, where �
and � are integers. From � and � we construct orientation images (orientation of intensity
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gradient) �� and ��. Taking � as the complex imaginary unit and sgn��� to represent the
signum function, �� is:

����� �� � sgn

�
����� ��

��
� �

����� ��

��

�
(1)

where sgn��� �

�
� if ��� � �
�
���

otherwise

Partial differentials are calculated using central differences [23]. To avoid a reduction
in image size forward / backward differences are used for border pixels. � � is constructed
in the same fashion as ��.

Orientation images are matched using correlation. Correlation is computed quickly
with Fast Fourier Transforms (FFTs). Given ���	� 
�, the FFT of ����� ��, ���	� 
�, the
FFT of ����� ��, and IFFT() the Inverse Fast Fourier Transform function, the orientation
correlation matching surface is:

�
�
IFFT

�
���	� 
���

��	� 
�
��

(2)

The registration of � and � is measured from the position of the maximum in (2).
Note that frequency domain correlation has the effect of correlating � � with ���, which

is a necessary part of the algorithm. Note also that the correlation is cyclic. This derives
from the cyclic nature of the FFT. If shifts greater than half the image size are expected the
four possible interpretations of the maximum must be considered, and the best selected.
Finally note that (2) assumes �� and �� are the same size. Images of differing sizes are
correlated with FFTs by zero padding the smaller size to the size of the larger prior to
taking the forward FFTs.

Squared orientation correlation If the images to be matched are the inverse of one
another, e.g. for a no shift perfect match ���� �� � ����� ��, then squared orientation
correlation should be applied. In squared orientation correlation the right hand side of (1)
is squared. The method is able to match images where one, both, or neither have been
inverted. Images with inverted regions will also be matched.

3 Analysis

In this section we analyse orientation correlation. The methods properties of illumination
invariance, statistical robustness, and speed are explained.

3.1 Illumination invariant representation

Orientation correlation matches orientation images �� and ��, (1). An orientation image
is invariant to both scale and offset illumination changes.

Each pixel in a orientation image is a complex number. Each complex number repre-
sents the orientation of intensity gradient at that pixel. The magnitude of a pixel is either
one or, in the case of a uniform region of the image with no gradient, zero. Since correla-
tion is used for matching, a � � �� pixel will have no effect. This is a desirable property -
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(a) Original (b) ��� scale, 150 offset.

Figure 1: Sub-image and overlaid arrows representing the orientation image.

a uniform area of an image provides no information for a match invariant to illumination
change.

Orientation correlation is well suited to matching images of different modalities, e.g.
matching infrared images with intensity images. This is because all orientation images
have the same units; each pixel is a measure of an angle.

Figure 1(a) shows a region of a video frame with arrows overlaid to show the complex
pixel values of the orientation image. Figure 1(b) shows the region scaled and offset. Note
the orientation images of Figure 1(a) and 1(b) are the same.

3.2 Statistically robust matching

Orientation correlation applies a kernel based on the M-estimator proposed by Andrews
[15] to differences in gradient orientation. Andrews proposed an influence function (de-
rivative of kernel) as:

���
� �

�
����
� for � � � 
 � �

� elsewhere

where 
 is the quantity to be minimised. Thus Andrews kernel function is of the form:

��
� �

�
� �	��
� for � � � 
 � �


 elsewhere
(3)

To show how orientation correlation uses the Andrews kernel we consider two orien-
tation image pixels, � and �. As � and � are orientation image pixels their magnitude is
either one or the pixel is � � ��. Since correlation is multiplicative a � � �� pixel has no
effect. Therefore we consider: ��� � ��� � 
. Taking the complex conjugate of �, and
expressing the pixels in a polar form gives:

� � ���, �� � ����

Correlation shifts one image with respect to the other and measures the sum of the prod-
ucts. The product of pixel � and the complex conjugate of pixel � is:

���� � �������
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(a) Robust kernel with normalised histogram of �
at the OC match.

(b) Mosaic of the OC match.

Figure 2: Orientation correlation (OC) matching the first and ��th frames of the coastguard
sequence.

Returning to Cartesian coordinates, taking the real part only, and substituting � � � � �

we have:

������� � �	���� (4)

From this last equation we see that the real part of the multiple of � and � � is the same as
differencing angles (orientations) of each pixel and applying a cosine kernel function.

Comparing (4) with (3) we see that over the range �� � 
 � �, the functions differ
only in a coefficient of �
. Selecting the range of � to be ���� �
, (4) is equivalent to the
Andrews kernel function. The significance of the differing coefficient of �
 is that the
best orientation correlation match will be indicated by a maximum.

Orientation correlation’s robust kernel is shown in Figure 2(a). The kernel has been
scaled and shifted for display with a normalised histogram. The normalised histogram is
of � at the correct cyclic match of the first and ��th frames of the coastguard sequence.
A mosaic of the coastguard frames as found by orientation correlation is shown in Figure
2(b).

The histogram in Figure 2(a) contains two distributions. Correctly matching orienta-
tions are spread about � � �. Effects such as object motion and cyclic match wrapping
cause locally incorrect orientation matches. These are uniformly spread across the range
of �. Figure 2(a) shows that the robust kernel maximises the correct match orientations
without overly weighting the contribution of incorrect orientation matches. The kernel is
wider than the distribution of correct match orientations of the coastguard frames. From
this observation we can expect orientation correlation to work equally well with images
containing a higher level of noise.
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(a) Robust kernel with normalised histogram of �
at the SOC match.

(b) Mosaic of the SOC match.

Figure 3: Squared orientation correlation (SOC) matching the first frame and inverted
��th frame of the coastguard sequence.

Squared orientation correlation: In squared orientation correlation orientation image
pixels are squared. Considering squared orientation images pixels � and � �, setting their
magnitudes to one, and expressing them in polar formwe have: � � � ��� and �� � �����.
Using � � ��� the real part of ��� is: ������� � �	�����. Thus we see that correlating
one squared orientation image with the complex conjugate of another applies a �	�����
error kernel to the difference of pixel orientations.

The robust kernel of squared orientation correlation is shown in Figure 3(a). The ker-
nel has been scaled and shifted for display with a normalised histogram. The normalised
histogram is of � at the correct cyclic match of the first frame and inverted ��th frame
of the coastguard sequence. A mosaic of the frames as found by squared orientation
correlation is shown in Figure 3(b).

As with Figure 2(a) the histogram in Figure 3(a) contains two distributions. Again
the distribution of incorrectly matching orientations is approximately uniform. However,
with one frame inverted the distribution of correctly matching orientations is centered
about � � � (which is the same as � � ��). Figure 3(a) shows that the robust kernel
of squared orientation correlation maximises distributions centred about both � � � and
� � �. Thus squared orientation correlation can match images where neither, one, or both
are inverted.

3.3 Computational cost

The majority of the computational cost of orientation correlation is with the FFTs. Orien-
tation correlation requires two forward and one backward FFTs of complex value images.
Three complex FFTs of size � by � require ��� �	����� � real multiplications [24].
Equivalent data domain image registration requires� �� � operations.

138



MA�
bus coastguard foreman

Method as % of FS as % of FS as % of FS
NC 10.3 130% 6.57 115% 4.44 157%
PC 11.2 141% 7.40 130% 4.75 167%
OC 9.13 115% 6.06 106% 3.57 126%
FS 7.91 100% 5.69 100% 2.84 100%

Table 1: Mean absolute prediction error (MA�) for normalised correlation (NC), phase
correlation (PC), orientation correlation (OC), and full search (FS) methods.

4 Experiments

This section experimentally demonstrates the advantages of orientation correlation over
the standard cyclic correlation techniques of normalised correlation and phase correlation
[17].

4.1 Video coding

Here orientation correlation is compared to normalised correlation and phase correlation
in the application of block motion estimation for video coding. Experiments are under-
taken on the first 
�� frames of three Cif size (�������) video sequences, using standard
MPEG size (
� � 
�) blocks. A well defined goal, minimising prediction error, makes
for a good comparative test. Motion vectors are limited to ��� � �
 with integer pixel
accuracy. Comparison is made in relation to baseline full search (FS) method. The per-
formance is measured by the ability of the method to minimise mean absolute prediction
error (MA�). The MA� of frame � is defined as:

MA� � mean�������� ��� � ���� ���

where � is an original frame and � � is its reconstruction from motion compensation of the
previous frame.

Temporally adjacent blocks are correlated to generate motion vectors. Correlating
sequential blocks is efficient, each block need only be transformed once; compared to
non-sequential correlation the overall number of forward FFTs can be halved. A relatively
small block size does not suit correlation techniques; benefits of the FFT are greater for
larger images. Even so a significant gain in performance over the full search method is
achieved. Full search requires 
�� � ��� ��� subtractions and counter increments per
block. Orientation correlation requires � � � � 
� � 
� � �	���
� � 
�� � �� 
�� real
multiplications per block. Modern CPU perform add or multiply operations in one clock
cycle, these numbers are comparable operation counts.

MA� for the first 150 frames of bus, coastguard, and foreman sequences is shown in
Table 1. On all three sequences orientation correlation (OC) outperforms both normalised
correlation (NC) and phase correlation (PC).
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(a) brightfield (b) phase contrast

Figure 4: Multimodal microscope images from [10]

4.2 Registration of multimodal microscopy images

Here we demonstrate squared orientation correlation successfully registering a particu-
larly challenging pair of multimodal microscopy images. The images, shown in Figure
4, are of algal and bacterial cells [13]. During the change in optics a shift in position is
introduced. Automatic registration of the images is required for analysis.

The images are challenging to register due to their size (�
� by ���), size of shift
(��,
��), widely differing modalities of the images (light regions in Figure 4(a) are dark
in Figure 4(b)), and the differing features of each image modality. [13] reports that nor-
malised correlation and phase correlation are unable to register the images. Squared ori-
entation correlation successfully registers the images. The squared orientation correlation
matching surface is shown in Figure 5. Figure 5 shows a clear peak at the correct regis-
tration position.

[13] registers the images by correlating absolute gradient. This is not robust. To
demonstrate the advantage of squared orientation correlation over correlating absolute
gradient images, we crop the right and bottom of the brightfield image and the left and top
of the phase contrast image. The more the images are cropped the harder the images are to
register. We measure the percentage overlap of the correct registration. For example, with
no cropping ��� of each image overlaps at the correct registration. Correlating absolute
gradient fails even when the images have a ��� overlap. Squared orientation correlation
is able to correctly register the images with only a 
�� overlap.

5 Conclusion

Orientation correlation, a fast, exhaustive, illumination invariant, statistically robust,
translational image matching technique has been presented. Analysis has been made of
the methods illumination invariance, statistical robustness, and computational cost. Ad-
vantages of the method has been experimentally shown in the applications of video coding
and registration of multimodal microscopy images.
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(a) side view showing row shift (b) side view showing column shift

Figure 5: Squared orientation correlation matching surface of the images in Figure 4.
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