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Abstract

The fusion of images is the process of combining two or more images into
a single image retaining important features from each. Fusion is an impor-
tant technique within many disparate fields such as remote sensing, robotics
and medical applications. Wavelet based fusion techniques have been rea-
sonably effective in combining perceptually important image features. Shift
invariance of the wavelet transform is important in ensuring robust subband
fusion. Therefore, the novel application of the shift invariant and direction-
ally selective Dual Tree Complex Wavelet Transform (DT-CWT) to image
fusion is now introduced. This novel technique provides improved qualita-

tive and quantitative results compared to previous wavelet fusion methods.

1 Introduction

Image fusion is the process by which two or more images are combined into a single
image retaining the important features from each of the original images. The fusion of
images is often required for images acquired from different instrument modalities or cap-
ture techniques of the same scene or objects. Important applications of the fusion of
images include medical imaging, microscopic imaging, remote sensing, computer vision,
and robotics.

Fusion techniques include the simplest method of pixel averaging to more compli-
cated methods such as principal component analysis and wavelet transform fusion. Sev-
eral approaches to image fusion can be distinguished, depending on whether the images
are fused in the spatial domain or they are transformed into another domain, and their

transforms fused.
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2 Wavelet Transform Fusion

The most common form of transform image fusion is wavelet transform fusion [1, 2, 4,
6, 9]. In common with all transform domain fusion techniques the transformed images
are combined in the transform domain using a defined fusion rule then transformed back
to the spatial domain to give the resulting fused image. Wavelet transform fusion is more
formally defined by considering the wavelet transforms w of the two registered input
images I (x,y) and Ir(z,y) together with the fusion rule ¢. Then, the inverse wavelet

transform w =" is computed, and the fused image I(x, ) is reconstructed:

I(z,y) = w (¢ (D (z,y)), w(l2(z,9)))). 0]

This process is depicted in figure 1 1.
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Figure 1: Fusion of the wavelet transforms of two images.

3 Discrete Wavelet Transform (DWT) Fusion

The basic idea of all multiresolution fusion schemes is motivated by the human visual
system being primarily sensitive to local contrast changes, e.g. the edges or corners. In
the case of wavelet transform fusion all respective wavelet coefficients from the input
images are combined using the fusion rule ¢. Since wavelet coefficients having large
absolute values contain the information about the salient features of the images such as
edges and lines, a good fusion rule is to take the maximum of the [absolute values of
the] corresponding wavelet coefficients. A more advanced area based selection rule is
proposed in [1]. The maximum absolute value within a window is used as an activity

measure of the central pixel of the window. A binary decision map of the same size as the

I'taken from [8]
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DWT is constructed to record the selection results based on a maximum selection rule.
A similar method was suggested by Burt and Kolczynski [5]. Rather than using a binary
decision, the resulting coefficients are given by a weighted average based on the local
activity levels in each of the images’ subbands. Another method called contrast sensitivity
fusion is given in [9]. This method uses a weighted energy in the human perceptual
domain, where the perceptual domain is based upon the frequency response, i.e. contrast
sensitivity, of the human visual system. This wavelet transform image fusion scheme is an
extension to the pyramid based scheme described by the same authors. Finally, a recent
publication by Zhang and Blum [10] provides a detailed classification and comparison of

multiscale image fusion schemes.

3.0.1 Implemented Fusion Rules

Three previously developed fusion rule schemes were implemented using discrete wavelet

transform based image fusion:

e maximum selection (MS) scheme: This simple scheme just picks the coefficient in

each subband with the largest magnitude;

e weighted average (WA) scheme: This scheme developed by Burt and Kolczynski [5]
uses a normalised correlation between the two images’ subbands over a small local
area. The resultant coefficient for reconstruction is calculated from this measure

via a weighted average of the two images’ coefficients;

e window based verification (WBV) scheme: This scheme developed by Li ef al. [1]
creates a binary decision map to choose between each pair of coefficients using a

majority filter.

4 Complex Wavelet Image Fusion

Figure 2 demonstrates the fusion of two images using the complex wavelet transform. The
areas of the images more in focus give rise to larger magnitude coefficients within that
region. A simple choose maximum scheme is used to produce the combined coefficient
map. The resulting fused image is then produced by transforming the combined coeffi-
cient map using the inverse complex wavelet transform. The wavelet coefficient images
show the orientated nature of the complex wavelet subbands. Each of the clocks’ hands
which are pointing in different directions are picked out by the differently orientated sub-
bands.
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All of the coefficient fusion rules implemented with the discrete wavelet transform
can also be implemented with the complex wavelet transform. In this case, however, they
must be applied to the magnitude of the DT-CWT coefficients as they are complex.

Although extremely computationally efficient, the discrete wavelet transform is not
shift invariant. Shift invariance within wavelet transform image fusion is essential for
the effective comparison of coefficient magnitudes used by the fusion rule ¢. This is
because the magnitude of a coefficient within a shift variant transform will often not
reflect the true transform content at that point. The shift variance within a DWT is a result
of the subsampling necessary for critical decimation. The shift invariant discrete wavelet
transform (SIDWT) was an initial attempt to integrate shift invariance into a DWT by
discarding all subsampling. The SIDWT is therefore considerably overcomplete. It has
been used for image fusion as reported in [7] with much improved results over the standard
DWT techniques. The motivation for using the DT-CWT for image fusion is its shift
invariance together with its reduced overcompleteness when compared with the SIDWT.
The improved directional selectivity of the DT-CWT should also provide improved results
over the SIDWT.

The complex wavelet transform was used with the filters given in [3] designed for

improved shift invariance.

S Experimental Fusion Method Comparison

Meaningful comparison of image fusion methods is often dependant on the application.
For some applications (e.g. medical image fusion) the aim of the fusion is to combine
perceptually salient image elements such as edges and high contrast regions. Evaluation
of fusion techniques for such applications can only be effectively based on a perceptual
comparison. For other applications (such as multifocus image combination) computa-
tional measures can also be used for fusion evaluation. We therefore split the comparison

into two types: qualitative comparisons and quantitative comparisons.

5.1 Qualitative Comparisons

Two image pairs fused using four fusion methods are displayed in figures 3 and 4 for
visual comparison. Close inspection of the images in figure 4 shows that the DT-CWT is
able to preserve the subtle texture regions of the brain in the MR image better than any of
the other methods. This ability is better retained when using the simple MS coefficient fu-

sion rule. The other fusion rules have the effect of blurring such textures. Ringing effects
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Figure 2: The image fusion process using the DT-CWT and two registered multifocus clock images

are very evident within all the DWT fused results. This is true but less noticeable with the
DT-CWT fused images. The multiscale edge fusion results preserve the important edge

information from the input images.

5.1.1 DWT versus DT-CWT

Figures 3(a) and 3(b) show a pair of multifocus test images that were fused for a closer
comparison of the DWT and DT-CWT methods. Figures 3(d) and 3(e) show the results of
a simple MS method using the DWT and DT-CWT, respectively. These results are clearly

superior to the simple pixel averaging result shown in 3(c). They both retain a perceptually
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acceptable combination of the two “in focus™ areas from each input image. An edge fusion
result is also shown for comparison (figure 3(f)) [8]. Upon closer inspection however,
there are residual ringing artefacts found in the DWT fused image not found within the
DT-CWT fused image. Using more sophisticated coefficient fusion rules (such as WBV
or WA) the DWT and DT-CWT results were much more difficult to distinguish. However,
the above comparison when using a simple MS method reflects the ability of the DT-CWT
to retain edge details without ringing.
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Figure 3: (a) First image of the multifocus test set. (b) Second image of the multifocus test set. (c)
Fused image using average pixel values. (d) Fused image using DWT with an MS fuse rule. (e)
Fused image using DT-CWT with an MS fuse rule. (f) Fused image using multiscale edge fusion

(point representations).

5.2 Quantitative Comparisons

Often the perceptual quality of the resulting fused image is of prime importance. In these
circumstances comparisons of quantitative quality can often be misleading or meaning-
less. However, a few authors [1, 7, 10] have attempted to generate such measures for
applications where their meaning is clearer. Figures 3(a) and 3(b) reflect such an appli-
cation: fusion of two images of differing focus to produce an image of maximum focus.
Firstly, a “ground truth” image needs to be created that can be quantitatively compared to

the fusion result images. This is produced using a simple cut-and-paste technique, physi-
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Figure 4: (a) First image (MR) of the medical test set. (b) Second image (CT) of the medical test
set. (c) Fused image using average pixel values. (d) Fused image using DWT with an MS fuse
rule. (e) Fused image using DT-CWT with an MS fuse rule. (f) Fused image using multiscale edge

fusion (point representations).

cally taking the “in focus” areas from each image and combining them. The quantitative

measure used to compare the cut-and-paste image to each fused image was taken from [1]

2

_ ¢ S S0 ot ) = Tpalis )
p= N2 )
where Iy; is the cut-and-paste “ground truth” image, I ;4 is the fused image and N is
the size of the image. Lower values of p indicate greater similarity between the images
Iy and I;q and therefore more successful fusion in terms of quantitatively measurable
similarity.

Table 1 shows the results for the various methods used. The average pixel value
method gives a baseline result. The PCA method gave an equivalent but a slightly worse
result. These methods have poor results relatively to the others. This was expected as
they have no scale selectivity. Results were obtained for the DWT methods using all the
biorthogonal wavelets available within the Matlab (5.0) Wavelet Toolbox. Similarly, re-
sults were obtained for the DT-CWT methods using all the shift invariant wavelet filters
described in [3]. Results were also calculated for the SIDWT using the Haar wavelet and

the bior2.2 Daubechies wavelet. The table 1 shows the best results for all filters for each
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method. For all filters, the DWT results were worse than their DT-CWT equivalents. Sim-
ilarly, all the DWT results were worse than their SIDWT equivalents. This demonstrates
the importance of shift invariance in wavelet transform fusion. The DT-CWT results were
also better than the equivalent results using the SIDWT. This indicates the improvement
gained from the added directional selectivity of the DT-CWT over the SIDWT. The WBV
and WA methods performed better than MS with equivalent transforms as expected, with
WBYV performing best for both cases. All of the wavelet transform results were decom-
posed to four levels. In addition, the residual low pass images were fused using simple

averaging and the window for the WA and WBYV methods were all set to 3x3.

Fusion Method p
Average pixel fusion 8.3553
PCA (MS fusion rule) 8.3737
DWT (MS fusion rule) 8.2964
SIDWT (MS fusion rule) 7.2080
DT-CWT (MS fusion rule) 7.1184

DDWT - all wavelet coefficients (MS fusion rule) 7.6165
DDWT - point representations only (MS fusion rule) | 8.4517

DWT (WA fusion rule) 7.6551
DT-CWT (WA fusion rule) 7.1043
DWT (WBV fusion rule) 7.5271
DT-CWT (WBYV fusion rule) 6.9540

Table 1: Quantitative results for various fusion methods.

5.3 Effect of Wavelet Filter Choice for DWT and DT-CWT Based

Fusion

There are many different choices of filters to effect the DWT transform. In order not
to introduce phase distortions, using filters having a linear phase response is a sensible
choice. To retain a perfect reconstruction property, this necessitates the use of biorthogo-
nal filters. MS fusion results were compared for all the images in figures 3 and 4 using all
the biorthogonal filters included in the Matlab (5.0) Wavelet Toolbox. Likewise there are

also many different choices of filters to effect the DT-CWT transform. MS fusion results
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were compared for all the same three image pairs using all the specially designed filters
given in [3].

Qualitatively all the DWT results gave more ringing artefacts than the equivalent DT-
CWT results. Different choices of DWT filters gave ringing artefacts at different image
locations and scales. The choice of filters for the DT-CWT did not seem to alter or move
the ringing artefacts found within the fused images. The perceived higher quality of
the DT-CWT fusion results compared to the DWT fusion results was also reflected by a

quantitative comparison.

6 Summary

The aim of this paper has been to compare image fusion using the DT-CWT with existing
fusion techniques. For an effective fusion of images a technique should aim to retain
important features from all input images. These features often appear at different positions
and scales. Multiresolution analysis tools such as the wavelet transform are therefore
ideally suited to image fusion. Simple non-multiresolution methods for image fusion

(such as averaging and PCA methods) have produced limited results (see table 1).

6.1 DWT Fusion

The DWT fusion methods provide computationally efficient image fusion techniques.
Various fusion rules for the selection and combination of subband coefficients increase
the quality (perceptual and quantitatively measurable) of image fusion in specific appli-

cations.

6.2 DT-CWT Fusion

The developed DT-CWT fusion techniques provide better quantitative and qualitative re-
sults than the DWT at the expense of increased computation. The DT-CWT method is able
to retain edge information without significant ringing artefacts. It is also good at faith-
fully retaining textures from the input images. All of these features can be attributed to
the increased shift invariance and orientation selectivity of the DT-CWT when compared
to the DWT. A previously developed shift invariant wavelet transform (the SIDWT) has
been used for image fusion [7]. However, the SIDWT suffers from excessive redundancy.
The SIDWT also lacks the directional selectivity of the DT-CWT. This is reflected in the

superior quantitative results of the DT-CWT (see table 1). Various fusion rules for the

495



selection and combination of subband coefficients increases the quality (perceptual and
quantitatively measurable) of image fusion in specific applications. The DT-CWT has the
further advantage that the phase information is available for analysis. However, after an
initial set of experiments using the notion of phase coherence, no improvement in fusion

performance has been achieved.
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