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Abstract

In this paper, we present a non-intrusive method for human motion estima-
tion from a monocular video camera for the teleoperation of ROBONAUT
(ROBOtic astroNAUT). ROBONAUT is an anthropomorphic robot devel-
oped at NASA - JSC, which is capable of dextrous, human- like maneuvers
to handle common extravehicular activity tools. The human operator is repre-
sented using an articulated three-dimensional model consisting of rigid links
connected by spherical joints. The shape of a link is described by a triangu-
lar mesh and its motion by six parameters: one three-dimensional translation
vector and three rotation angles. The motion parameters of the links are
estimated by maximizing the conditional probability of the frame-to-frame
intensity differences at observation points. The algorithm was applied to real
test sequences of a moving arm with very encouraging results. Specifically,
the mean error for the derived wrist position (using the estimated motion pa-
rameters) was 0.57�0.31 cm. The motion estimates were used to remotely
command a robonaut simulation developed at NASA - JSC.

1 Introduction

Human exploration and development of space will demand a heavy extravehicular activity
(EVA)workload (space walks) from a small number of crewmembers. In order to alleviate
the astronaut workload robots remotely working with teleoperated control are currently
being developed at NASA - Johnson Space Center. One such robot is the ROBONAUT
(ROBOtic astroNAUT), which is an anthropomorphic robot with two arms, two hands, a
head, a torso, and a stabilizing leg [2]. The arms are capable of dexterous, human-like
maneuvers to handle common EVA tools.

One intuitive way to teleoperate the ROBONAUT is to estimate the three-dimensional
motion of the teleoperator’s body parts (e.g., head, arms, torso, and legs) and then use the
estimated motion parameters to control the ROBONAUT [12]. In such a system, the robot
duplicates the movements made by a teleoperator. As the teleoperator extends out his/her
arm, so does the ROBONAUT. And if the teleoperator starts twisting a screwdriver, the
ROBONAUT should duplicate the action.

The existing literature on humanmotion estimation from amonocular image sequence
can be roughly divided into two groups (see [1, 6, 16] for comprehensive reviews). The
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first one estimates the motion using image features (e.g, edge points) [7, 8, 11]. The sec-
ond group estimates the motion from frame to frame intensity differences at observation
points [4, 13, 17]. Those motion parameters, which minimize the frame to frame intensity
differences at observation points, are considered to be the estimates of the motion param-
eters. In [5] both image features and frame to frame intensity differences are taken into
account for motion estimation. In this contribution, the motion is estimated by maximiz-
ing the conditional probability of the frame to frame intensity difference at observation
points [14, 15].

Until now, the Maximum-Likelihood motion estimation has been only applied to es-
timate the motion parameters of the head and shoulders of a subject. In this work, we
develop a model of the right arm of a human and apply the Maximum-Likelihoodmotion
estimation. Then, we employ the motion estimates to remotely command the right arm
of a virtual ROBONAUT using a simulation developed at NASA - Johnson Space Cen-
ter [10]. Finally, we perform a number of experiments on real data to assess the accuracy,
limitations and advantages of the approach.

The remainder of this paper is structured as follows. In Section 2, the Maximum-
Likelihood motion estimation algorithm is described. In Section 3, the process for com-
manding the right arm of the virtual ROBONAUT is presented. In Section 4, experimental
results for real image sequences are detailed. Finally, in Section 5, we offer our conclu-
sions.

2 Maximum-Likelihood Motion Estimation

Figure 1 depicts an articulated object consisting of two rigid links� � and�� connected by
a spherical joint �� (at times �� and ����). In the following, without loss of generality, we
assume that the link�� is the root link of the articulated object and that the shape, position,
and orientation of both links as well as the position of the joint � � � ��

���
� � �

���
� � �

���
� ��

at time �� are known or previously estimated. In addition, the origin of the coordinate
system of the link �� is placed at the joint position �� and the origin of the coordinate
system of the root link is placed at an arbitrary point �� inside its mesh.

The motion of the root link�� from time �� to time ���� is described first by a rotation
and then by a translation of its local coordinate system in the world coordinate system.
The translation is described by the translation vector ��� � ���

���
� ���

���
� ���

���
� �.

The rotation is described by the rotation matrix��� defined by the three rotation angles
��

���
� ,�����

� , and�����
� . Let� and�� the position of an arbitrary point on the surface

of the root link �� before and after the motion (i.e., at times �� and ����, respectively).
The new position�� is computed as follows:

�� � ��� � ��� ��� � �� ���� � (1)

The motion of the link �� from discrete time �� to ���� is described first by a transla-
tion and then by a rotation of its local coordinate system in the world coordinate system.
The rotation is described by the rotation matrix ��� defined by the three rotation an-
gles �����

� , �����
� , and �����

� . The translation is described by the 3D translation vector

��� � ���
���
� ���

���
� ���

���
� �. Due to the constraints imposed by the joint �� on the

motion of the link ��, the translation vector ��� depends entirely on the rotation ���
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Figure 1: Example of the motion of the human arm model.

and translation vector��� of the root link �� and it is computed as follows:

��� � ��� � ��� � ��� � �� ���� � �� � (2)

According to Eq. 2 the motion of the link �� enforces a translation on the link ��.
Since the translation vector can be calculated applying equation Eq. 2, only the rotation
angles of the link �� need to be estimated. In following, an algorithm for estimating the
translation vector, and the rotation angles of the root link � �, and the rotation angles of
the link �� is described.

For estimating the motion parameters of the root link �� a set of� observation points
����� ��������� � �� � 	 �, are evaluated. An observation point lies on the surface of the
mesh of the link at position ���� � �


���
� � 


���
� � 


���
� �� and carries the intensity value

���� at this position. The position of the projection of the observation point 
 ��� into the
image plane is represented by ���� � ��

���
� � �

���
� ��. Let ���� � �

���
� � 

���
� �� be the ob-

servable linear intensity gradient at image position � ���. In order to reduce the influence
of the camera noise and to increase the accuracy of the estimates only those observation
points with high linear intensity gradient �

�������� 	 Æ�� are taken into account for motion
estimation. Assuming that the shape, position, and orientation of the model link corre-
spond with those of the real link at time ��, the frame to frame intensity difference �� at
the observation point ���� is approximated as follows:

�������� � ������
����� ����

���� � ������
����� ���� �

where �������� and ���������� represent the intensity value of the images �� and ���� at
the position ����, respectively. Since in general ���� lies outside of the image raster, the
intensity value ���������� is computed by bilinear interpolation of the intensity values of
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the nearest four pixels in the intensity image ����. The frame to frame intensity difference
at � observation points is represented as follows:

��� � ������������ ����������� � � � � ���������� �

The motion parameters�� � ���
���
� ���

���
� ���

���
� � ��

���
� ���

���
� ���

���
� �� of the

root link �� are estimated by maximizing the conditional probability ���� ����� of the
frame to frame intensity differences��� at� observation points:

���������� � ��������� ��� � (3)

where ��� � �
�

��
���
� �
�

��
���
� �
�

��
���
� �
�

��
���
� �
�

��
���
� �
�

��
���
� �� are the estimated motion pa-

rameters. To simplify the maximization Eq. 3 can be written as follows [14, 15]:

� �	 ���������
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�
������

�
������ �	� ����

�
�
������ �	� �����

���
�
������
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Thus, the Maximum-Likelihood motion estimates ��� are given by:
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�
	�

�
�
��	�

���
	�

�
�
����� � (4)
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and ���, �
�
� , and �

�
� are the variances of the position error at the observation points. The

position error is assumed to be the result of the shape and motion estimation errors in-
curred by the motion analysis of previous frames. In order to improve the reliability
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and accuracy of the estimates the Maximum-Likelihood motion estimation algorithm is
applied iteratively.

The estimation of the rotation angles of the link �� is carried out in two steps. In
the first step the translation vector is computed using Eq. 2. Then, the link � � is motion
compensated using the computed translation vector. Let � and� �� be the position of an
arbitrary point on the surface of the link �� before the motion (i.e., at time ��), and after
the translation enforced by the link ��, respectively. The position ��� is computed as
follows:

��� � ����� � (5)

The joint position also moves from �� to ���� according to the latter equation. Let �
� the

position of an arbitrary point on the surface of a relative link � � after the motion, i.e., at
time ����. �� is computed from��� as follows:

�
�

� ��� � ��
�� � ���� � � ���� � (6)

According to the Eq. 6 the following identity is true: ��

�

� ��
��.

In the second step, the rotation angles �� � ���
���
� ���

���
� ���

���
� �� of the link

�� are estimated also by applying an iterative Maximum-Likelihood motion estimation
algorithm. For the estimation only observation points (� ���� ��������� � ��� 	 
) on
the surface of the link �� are evaluated:

��� �
�
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������������ � To initialize the shape, position and orientation of the model we have
developed a semi-automatic algorithm whose inputs are a predefined three-dimensional
triangular mesh of the human arm, the anthropometric dimensions of the links, and the
image position of the joints at time ��. First, the links of the model are scaled according
to the real anthropometric dimensions and then their position and orientation is computed
from the known image joint positions at time �� (assuming that at time �� all the links are
parallel to the image plane of the camera).
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3 Commanding the ROBONAUT

In this section, we present our procedure to remotely command the right arm of the
ROBONAUT. Our goal is for the ROBONAUT to imitate the movements of the opera-
tor.

Instead of using the real ROBONAUT, we use a ROBONAUT simulation developed
at NASA - JSC. The ROBONAUT simulation matches the appearance and kinematics of
the real ROBONAUT, and it’s state is controlled from other processes just like the real
ROBONAUT. The control communication is done through a ROBONAUT API developed
at NASA - JSC [3]. The ROBONAUT API gives us the ability to see ROBONAUT’s
sensor data and to command ROBONAUT. The only difference in the interface between
ROBONAUT and its simulation is that some sensor data coming from the simulation are
not valid. As its underlying communications package, the ROBONAUT API uses the
commercial product Network Data Delivery Service (NDDS) by Real Time Innovations,
Inc. (RTI). The graphics of the ROBONAUT simulation are created using the Enigma
Core libraries available from NASA - JSC Interactive Graphics, Operations, and Analysis
Laboratory (IGOAL)[9]. From this point onward, ROBONAUT and its simulation will be
treated the same.

The variables for the ROBONAUT’s right arm (that are available through the ROBO-
NAUT API) are the position and orientation of the ROBONAUT’s right palm (expressed
in terms of a coordinate system located on the ROBONAUT’s chest), the joint angles,
and their position limits. The root joint for the inverse kinematics computations is the
ROBONAUT’s right shoulder position. The palm’s end effector is located on the back
of the right hand, 1.5 inches forward from the wrist and 0.5 inches towards the back of
the hand. The only currently supported method of commanding the ROBONAUT’s right
arm is sending a message through the ROBONAUT API with a new desired position and
orientation for the ROBONAUT’s right palm. The arrival of the message on the ROBO-
NAUT site triggers the ROBONAUT’s control system, which enacts rotating and moving
the ROBONAUT’s right palm to the new desired position and orientation. The new wrist
and elbow positions are computed by using inverse kinematics.

For the teleoperation of the ROBONAUT’s right arm, we apply the following six steps
to each image ���� of the image sequence:

1. Estimate themotion parameters of the operator’s right arm from time � � to ����. For
motion estimation apply the Maximum-Likelihood algorithm described in Section
2. Let����,���� be the estimated translation vector and rotation matrix of the
operator’s right upper arm, respectively, and let ���� be the estimated rotation
matrix of the operator’s right lower arm.

2. Compute the operator’s right palm position � �� at time ���� as follows:

�
�

� ����� � ��� � ��� � �� ����� � ��� � ��� � �� ����� � �� �

where ��, ��, �� are the positions of the operator’s right shoulder, elbow and palm
at time ��, respectively. The palm is assumed to be a rigid extension of the lower
arm.

3. Compute the translation vector of the operator’s right palm from time � � to ���� as
follows:
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��� � ��� � �� �

4. Read the current ROBONAUT’s right palm position ������ through the ROBO-
NAUT API.

5. Compute the new desired ROBONAUT’s right palm position � ������ as follows:

������� � ������ ���� �

6. Send a message through the ROBONAUTAPI with the new desired ROBONAUT’s
right palm position �������.

4 Experimental Results

We have implemented the Maximum-Likelihood motion estimation algorithm and have
performed a number of experiments on real image sequences to assess its accuracy, lim-
itations, and advantages for estimating the motion of the right arm of a person. The real
image sequences were obtained using a Pulnix TMC-9700 1-2/3”CCD Progressive Scan
Color Video Camera with a 2/3” 9 mm lens and a 640x480 RGB video output at a frame
rate of 30 Hz. The video signal was acquired using a Matrox Meteor-II/Multi-Channel
frame grabber. All the experiments were performed on a Pentium III (1Gz) workstation
with 0.5GB RAM running Windows 2000. The average processing time was ���� s per
frame. The minimum and maximum processing times were 0.43 s and 8.65 s per frame,
respectively. In all the experiments, the threshold Æ� was set to ��. This value was ex-
perimentally determined. Due to the lack of space, we present the experimental results
obtained from two real image sequences (HAZEL-A and HAZEL-C) only.

For the first experiment, we tested the Maximum-Likelihood motion estimation algo-
rithm using the HAZEL-C sequence (354 frames) depicting a woman moving her right
index finger along a rectangle with known position, orientation and dimensions (Figs. 2(a-
d)). Figs. 2(e-h) depict the model at the estimated position and orientation overlayed at the
image sequence. Fig. 3(a) depicts the ground truth (manually measured) and the positions
(computed using the estimated motion parameters) of the right index finger for the subject
depicted in the HAZEL-C sequence. Fig. 3(b) depicts the mean of the magnitude of the
position error for all the frames of the image sequence. The mean of the magnitude of the
position error of the right index finger is ��������� � � 0.570256 cm, while the variance
is 0.099233 cm�. The mean and variance of the magnitude of the position error on the
image plane are 1.099577 pixel and 0.586255 pixel �, respectively. The minimum and the
maximum values of the magnitude of the position error is 0.062808 cm and 1.856693 cm,
respectively. The minimum and maximum value of the magnitude of the position error on
the image plane are 0.043543 pixel and 3.142040 pixel, respectively.

For the second experiment, we tested the Maximum-Likelihood Motion Estimation
Algorithm using the HAZEL-A sequence (200 frames) depicting a woman grasping and
moving an object in front of a bookshelf. Figs. 4(a-d) depict the model at the estimated
position and orientation overlayed at the image sequence. Figs. 4(e-h) and Figs. 4(i-l)
depict the coronal and the sagittal view of the virtual ROBONAUT being animated with
the estimated motion parameters of the image sequence HAZEL-A.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: (a-d) Frames 1, 120, 180, and 354 from the sequence HAZEL-C, respectively.
(e-h) Original frames with the model overlayed at the estimated position and orientation.

5 Conclusions

We have implemented the Maximum-Likelihood motion estimation algorithm of articu-
lated objects and applied it for estimating the motion of a moving human arm. Then, we
performed a number of experiments on real data to assess its accuracy, limitations and
advantages. The experimental results revealed a position error for the right index finger
of 0.57�0.31 cm. Finally, we have used the motion estimates to remotely command the
right arm of a virtual ROBONAUT. The control communication is done through a ROBO-
NAUTAPI developed at NASA - JSC and the commercial product Real Time Innovations,
Inc. (RTI) Network Data Delivery Service (NDDS).
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Figure 3: (a) Plot of the position of the right index finger of the subject depicted in the
image sequence HAZEL-C. The solid line represents the ground truth position and the
dotted one the computed position (using the motion estimates). (b) Plot of the magnitude
of the position error of the index finger (��������� �� for all the frames of the image
sequence HAZEL-C.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: (a-d) Frames 1, 40, 116, and 160 from the sequence HAZEL-A with the
model overlayed at the estimated position and orientation. (e-l) Commanding a ROBO-
NAUT simulation developed at NASA - JSC using the estimated motion parameters of the
HAZEL-A sequence. (e-h) Coronal and (i-l) sagittal view of the postures corresponding
to the frames 1, 40, 116, and 160 of the sequence.
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