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Abstract

Plane detection is a prerequisite to a wide variety of vision tasks. This
paper proposes a novel method that exploits results from projective geometry
to automatically detect planes using two images. Using a set of point and
line features that have been matched between images, the method exploits the
fact that every pair of a 3D line and a 3D point defines a plane and utilizes
an iterative voting scheme for identifying coplanar subsets of the employed
feature set. The method does not require camera calibration, circumvents the
3D reconstruction problem, is robust to the existence of mismatched features
and is applicable either to stereo or motion sequence images. Sample results
from the application of the proposed method to real imagery are also provided.

1 Introduction

Due to their abundance in man-made environments, as well as to their attractive geometric
properties, planes are commonly used in various vision tasks. As reported in the literature,
planes have been successfully employed in diverse applications such as feature matching
[12, 14] and grouping [6], camera self-calibration [19], obstacle detection [13], 3D re-
construction and scene analysis [9, 3, 1, 2, 10], camera relative positioning [15], object
recognition [16], visual measurement [4], image mosaicing [22] and augmented reality
[17]. Elegant theoretical results related to planes have also been derived [20]. However,
despite their popularity, most vision algorithms based on the existence of planes rely on
manual or even unspecified schemes for detecting such planes in images. In this respect,
plane detection constitutes a preprocessing step, which precedes the exploitation of any
constraints imposed by planarity. As such, this step should be accomplished without
resorting to 3D reconstruction of the viewed scene, in contrast to what is usually proposed
by traditional approaches such as [8].

Existing methods for plane detection that avoid 3D reconstruction are typically based
on the extraction and matching of sparse geometric features from images. Sinclair and
Blake [18], for example, detect the planes present in a scene by employing pairs of matched
points extracted from a stereo pair and clustering them into coplanar sets using the two
projective invariants defined by quintuples of coplanar points. The main shortcoming of
this approach is that the values assumed by these invariants are sensitive to errors in the
localization of image points. Therefore, their comparison is not a trivial issue. Starting
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with a rough initial estimate, Fornland and Schnörr [5] propose a two-step method for
locating the dominant plane1 present in a scene by iteratively solving for both the plane
homography and the stereo point correspondence. Lourakis and Orphanoudakis [13] solve
a similar problem by employing a robust estimation technique to identify the dominant
plane as the one whose induced homography conforms to the motion of the majority of
previously matched features. Both [5] and [13] share the drawback of making implicit
assumptions regarding the minimum fraction of point features belonging to the dominant
plane, a fact that limits their applicability in certain cases.

In this work, a novel method for detecting coplanar sets of point and line features in
two images is proposed. The method is based on the observation that every feature pair
comprised of a 3D line and a 3D point defines a plane and employs an iterative voting
scheme for identifying coplanar subsets of the set of features that are matched between the
two images. The use of projective geometry eliminates the need for camera calibration and
3D reconstruction, while robust estimation techniques guard against feature mismatches.
The rest of the paper is organized as follows. Section 2 provides some preliminary
concepts along with the notation that will be used for the development of the method.
Section 3 presents an analytical result which is exploited in Section 4 for developing the
proposed plane detection method. Experimental results from a prototype implementation
are reported in Section 5. The paper is concluded with a brief discussion in Section 6.

2 Background and Notation

In the following, vectors and arrays will appear in boldface and the symbol � will be used
to denote equality of vectors up to a scale factor. 3D points or lines appear in uppercase
letters, while their image projections appear in lowercase letters (e.g. � and � ). Using
projective (homogeneous) coordinates, an image point ���	��
��	
�� is represented by the �����
column vector ����������
��	
�
������ . A line defined by the equation � �"!#�$�&% is also
represented in terms of projective coordinates using the vector � . The line defined by two
points �(' and �() is given by the cross product �*'+�,�() .

A well-known constraint for a pair of perspective views of a rigid scene is the epipolar
constraint. This constraint states that for each point in one of the images, the correspond-
ing point in the other image must lie on a straight line. Assuming that no calibration
information is available, the epipolar constraint is expressed mathematically by a ���-�
singular matrix, known as the fundamental matrix and denoted by . . Another important
concept in projective geometry is the plane homography / , a nonsingular �0�-� matrix
which relates two uncalibrated retinal images of a 3D plane. More specifically, if � is the
projection in one view of a point on the plane and �21 is the corresponding projection in a
second view, then the two projections are related by a linear projective transformation:

� 1 �3/4� (1)

A similar equation relates a pair of corresponding planar lines � and � 1 in two views:

� 1 �3/65 � ��
 (2)

where / 5 � denotes the inverse transpose of / . For a more detailed treatment of the
application of projective geometry to computer vision, the interested reader is referred to
[7].

1Dominant is the plane on which the majority of the extracted features lie.
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Figure 1: A 3D line 7 projects to image lines � and ��1 and defines a pencil of 3D planes
that gives rise to a single parameter family of homographies between the two images.

3 The 3D Plane Defined by a Line - Point Pair

In this section, an analytical expression describing the homography induced by the plane
defined by a 3D line 7 and a 3D point �98: 7 is derived. This expression will be employed
later for identifying sets of coplanar point and line features. In Fig. 1, 7 is the common
intersection of a pencil of 3D planes containing it. As shown in [7], the homographies
induced by these planes are given by an equation depending on a single parameter ; ,
specifically

/<�=;>�?�A@ � 1CBED .<F<;HG 1 � � 
6; :JI (3)

In Eq.(3), � and ��1 are the projections of 7 in the two images, . is the underlying
fundamental matrix, G 1 is the epipole in the second image defined by . � G 1 �LK and @ � 1 B�D
is the skew symmetric matrix representing the vector cross product (i.e. M-N(
+@ ��1 B�D NO�
� 1*�PN ). Assuming that a point � not on 7 projects to the corresponding image points �
and �Q1 , let RS�L�O�4�21 . Obviously, �21H!TR6�U% and, since �21(�U/<�=;>�V� , it can be shown
that

�E@ � 1CB D .W�(�2!XR�FY;*� G 1 � � �2�(!�RZ�[%�\ (4)

Solving Eq. (4) for ; and substituting the solution into Eq. (3) yields the homography of
the plane defined by 7 and � . Note that all the above computations are based on entities
that are directly computed from images.

4 Coplanar Feature Detection

The key idea behind the proposed method is to compute all the homographies defined
by line and point pairs and then use them to identify the features lying on the most
prominent 3D plane, that is the one containing the largest set of corresponding features.
Following this, the features belonging to the most prominent plane are removed from
further consideration and the process is repeated until no more planes can be found. In
the remainder of this section, the proposed method is explained in more detail; Fig. 2 lists
its steps in pseudocode.

Given a pair of images taken from different viewpoints, the method starts by extracting
point and line features from both images. Point and line features are then matched between
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1. Extract and match point and line features
2. Estimate . and the epipoles
3. For each line - point pair not yet assigned to some plane do

3.a Compute the underlying homography with Eqs. (3) - (4)
3.b Use the computed homography to transfer all

features from the first image to the second
endfor

4. Choose the line - point pair yielding the homography that correctly
transfers the largest number of features

5. Reestimate the chosen homography using LMedS on the correctly
transferred features

6. Refine the LMedS homography estimate with an iterative nonlinear
method using the point inliers identified in step 5

7. Use the refined estimate to transfer all features between images
8. Label the features that are transferred correctly as coplanar

and remove them from the feature set
9. Repeat steps 3 through 8 until the number of coplanar points is

less than a threshold
10. Use the estimated homographies to reassign all features to planes

Figure 2: An overview of the proposed method; see text for details.

images using conventional, correlation based techniques and the underlying fundamental
matrix is estimated from matched point features as described in [21]. Next, the epipoles are
directly computed from the estimated fundamental matrix using SVD. The homographies
induced by each line and point pair are then computed as described in Section 3. To avoid
degenerate cases where a point lies too close to its paired line, a line - point pair is ignored
if the area of the triangle formed by the point and the endpoints of the line is too small.
A line - point pair is also ignored in the case that the homography computed from it is
not of rank 3. Each of the computed homographies is used along with Eqs. (1) and (2) to
transfer (i.e. predict the location of) every matched feature in one image to the other. For
each of the transferred features, a vote is tallied in favor of the homography which most
accurately predicts the location of its corresponding feature. In addition, each feature
is associated with the homography that most accurately transfers it between images. In
the case of points, the proximity between a transferred point feature and its matching
counterpart is quantified using the Euclidean distance. For lines, a similar metric based
on the Euclidean distances of their corresponding endpoints cannot be employed. This is
because line extraction rarely preserves the endpoints of corresponding line segments in
two images. Therefore, the proximity of line segments is quantified by a combination of
the difference between their distances from the image center and the difference in their
orientations. In order for a feature to be considered as accurately transferred, its distance
from its matching counterpart should be less than a tight threshold2.

Upon termination of the above voting process, the homography that receives the largest
number of votes is assumed to be induced by the most prominent 3D plane. To improve
the accuracy of this initial homography estimate, the full set of features associated with it

2Maximum acceptable distances are 2.0 pixels for points and 2.0 ] in orientation discrepancy for lines.
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is employed to re-estimate it using Least Median of Squares (LMedS) robust regression
[13]. This estimate is then further refined by applying the Levenberg-Marquardt algorithm
to iteratively minimize a nonlinear criterion that involves the mean symmetric transfer
error between actual and transferred points in the two images [7]. In order to safeguard
against point mismatches, the previous step is performed using only the point features that
correspond to inliers of the LMedS homography estimate. This last homography estimate
is used to transfer all features between images. Features whose transferred location is
close enough to their matching counterpart are labeled as being coplanar and are removed
from the feature set. The process just outlined reiterates for the remaining features until
the number of the detected coplanar features drops below a threshold. When the process
terminates, all the estimated homographies are used to transfer features between the two
images and each feature is assigned to the plane inducing the homography that most
accurately transfers it to its matching counterpart. This final step accounts for features
that have been assigned to some plane early in the execution of the method but are actually
closer to a plane that had not yet been discovered at that point. Features not transferred
correctly by any homography are not assigned to a plane.

5 Experimental Results

The performance of a prototype implementation of the proposed method has been evaluated
based on a set of test images. The point and line features employed throughout all
experiments have been extracted and matched automatically using the relaxation labeling
techniques presented in [21] and [11] respectively. Representative results from two of the
conducted experiments are given in this section.

The first experiment refers to the image pair shown in Figures 3(a) and 3(b), depicting
an office corner and a table in front of it. In order to facilitate the visualization of disparities
between the images, Figure 3(c) shows the two images superimposed in different color
channels. Note that the camera motion between the two images is such that the epipoles
are located outside the images, estimated at (1684.5, 215.0) and (1623.2, 216.1) for the
first and second image respectively. As it is well known, the accurate estimation of
the epipoles in this case is not an easy task. The matched features that were fed to the
proposed method are shown in Figs. 3(d) and 3(e). The plane detection method segmented
those features into three sets, namely the left wall, the right wall and the objects on the
table. Although this last set does not correspond to an actual 3D surface, its features
roughly belong to a 3D plane and thus their apparent motion between images is fairly
accurately captured by a homography. In Fig. 3(f), the point features assigned to the
detected planes are marked with different symbols for each plane; to avoid cluttering
the image, line features are not shown. The plane detection results are more easily
interpreted if the spatial extent of the detected planes is shown. To achieve this for some
plane, the second image (Fig. 3(b)) is warped towards the first image (Fig. 3(a)) using the
corresponding homography. This results in the cancellation of the plane’s motion, which
appears stabilized between the first and the warped images. Figures 4(a), 4(b) and 4(c)
show the warped images corresponding to the homographies of the three detected planes,
superimposed on the image in Fig. 3(a). Clearly, warping the image in Fig. 3(b) according
to the homography estimated for each plane, accurately registers the plane’s image. This
indicates the correctness of the assignment of features to planes.

The second experiment employs the image pair in Figures 5(a) and 5(b), showing a
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(a) (b) (c)

(d) (e)

(f)

Figure 3: (a), (b) two views of an office corner (courtesy of the INRIA RobotVis group),
(c) original views superimposed in different color channels, (d), (e) the features matched
between the two views: some mismatches, especially for lines, are noticeable, (f) corners
segmented into planes by the proposed method: points not assigned to any plane are
marked with crosses, points on the right wall with triangles, points on the left wall with
“bow ties” and points on the table with rhombi.
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(a) (b) (c)

Figure 4: Original images (Figs. 3(a) and 3(b)) superimposed after canceling out the
motion corresponding: (a) to the right wall, (b) to the left wall and (c) to the objects on
the table. Planes are accurately registered in all three cases.

laboratory scene having multiple planes with chessboard texture. As in the first experiment,
the epipoles are found to be located outside the images, namely at (1984.5, 263.5) and
(1705.5, 257.7). This experiment is challenging not only due to the rather large number
of planes contained in the images, but also due to the less reliable feature matches caused
by the repeating patterns present in the scene. To aid in the understanding of the spatial
arrangement of planes, Fig 5(c) shows a top view of the imaged scene. It is important
to note that this view is supplied for illustration purposes only, i.e. no processing relies
upon it. Figure 5(d) shows the two images in Figs. 5(a) and 5(b) superimposed in different
color channels. The features matched between images are shown in Figs. 5(e) and (f).
The proposed plane detection method segmented those features into four sets, namely the
back wall, the left foreground plane, the middle foreground plane and the “floor” plane.
As illustrated in Fig. 5(g) which shows the point features assigned to the detected planes
using different symbols, the right foreground plane is not detected as a distinct plane.
The main reason for this is the special spatial arrangement of the three foreground scene
planes. It is clear from Fig. 5(c) that the extensions in space of both the left and middle
foreground planes pass through the right foreground one. Thus, the apparent motion of the
right foreground plane can be well approximated by the homographies computed solely
from features lying on the left and middle foreground planes. As previously explained,
Figs. 6(a) through (d) show the warped images corresponding to the homographies of the
detected planes, superimposed on the image in Fig. 5(a). Again, it is evident that the
proposed method has successfully detected the planes contained in the viewed scene.

6 Conclusion

This paper has presented a fully automatic method for detecting the planes present in a
scene using a set of matched point and line features. The method searches for homogra-
phies with the aid of an iterative voting scheme based on pairs of point and line features.
Neither camera calibration nor 3D scene reconstruction is required, while possible mis-
matches among the employed feature sets are handled in a robust manner. Experiments
on two different image pairs provided evidence regarding the method’s performance.

The use of line features results in considerable reductions in the size of the space to
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5: (a), (b) two views of a laboratory scene containing multiple planes (courtesy
of the MIT AI lab), (c) top view of the imaged scene included for reference, (d) first two
views superimposed in different color channels, (e), (f) the features matched between the
two first views, (g) corners segmented into planes by the proposed method: points not
assigned to any plane are marked with crosses, points on the back wall with triangles,
points on the left foreground plane with “bow ties”, points on the middle foreground plane
with rhombi and points on the “floor” with circles. Note that the left and right parts of the
right foreground plane belong to the same space extended planes defined by the left and
the middle foreground planes respectively. Similarly, the points close to the right edge of
the middle foreground plane are found to belong to the space extended plane defined by
the left foreground plane.
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(a) (b)

(c) (d)

Figure 6: Original images (Figs. 5(a) and 5(b)) superimposed after canceling out the
motion corresponding: (a) to the back wall, (b) to the foreground left plane, (c) to the
foreground middle plane and (d) to the “floor” plane.

be searched, since in the case where only point features were used, the computation of
the homography induced by a single plane would require a triplet of features (i.e. three
corresponding points) and the epipoles or a quadruple of features if the fundamental matrix
is not available. Besides, real images usually contain less lines than points, making the
exhaustive search for homographies among all line - point pairs computationally feasible.
It should also be pointed out that compared to point features, line segments are more
robust to occlusions and can be more accurately localized in images.
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