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Abstract

Scale-orientation signature space represents a non-linear transformation from
normal grey-level image space. From this point of view there are similarities
with other representations such as radial basis functions, Fourier, Mellin and
wavelet transforms. Morphological related techniques are used to generate
the scale-orientation space. A series of filtering techniques, based on se-
lectively removing values in scale-orientation space, have been developed.
Transportation across scales, but not orientations, in scale-orientation space
is discussed as a way to preserve the base of image structures. Evaluation
of the described techniques is based on a set of standard images which con-
tain linear structures superimposed on a complex texture background. Both
quantitative and qualitative results are presented.
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1 Introduction

Morphology [7] and sieves [1] have been used for the segmentation of image features. In
general, when these techniques are applied to images the results contain enhanced struc-
tures, although these results depend on the structuring element associated with the tech-
niques. However, recently these techniques have been used to obtain a scale-orientation
representation at a pixel level [11]. Such a representation can be used, in combination
with statistical modelling, for the detection of image structures. The main reason for
incorporating statistical modelling is to generalise and clean the signatures. It has been
shown that this mainly affects the small values in the scale-orientation representation with
a bias towards smaller scales in the scale-orientation space [11]. It is known that the scale-
orientation representation has desirable [2] and less desirable [3] properties.

Here we investigate a number of basic image processing techniques by using char-
acteristics of scale-orientation space. In the first instance this concentrates on simple
techniques such as thresholding, filtering and thinning.

The developed techniques can be used for the enhancement of image structures, and
here we concentrate on the detection of linear structures. Because a standard image set is
used the results can be compared directly with previous evaluations [12, 9]. We present
both quantitative and qualitative results on the standard image set and mammographic
data. The quantitative results are presented as receiver operating characteristic (ROC)
curves [5], showing the trade-off between true positive and false positive detection of the
linear structures.
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2 Scale-Orientation Signatures

Two approaches to the extraction of scale-orientation signatures exist, one based on re-
cursive median filtering [8, 1] and another on morphology [7]. Detailed accounts of the
usage of both approaches can be found in [11] and [3].

The Recursive Median Filter (RMF) is one of a class of filters, known as sieves, that
remove image peaks or troughs of less than a chosen size [1]. An efficient implementation
of such an approach uses run-length coding to process the signal. By applying sieves of
increasing size to an image, then taking the difference between the output image from
adjacent size sieves, it is possible to isolate image features of a specific size. Sieves
have been shown to have desirable properties when compared to other methods [4] of
constructing a scale space [2]. In particular the results at different positions on the same
structure are similar (local stationarity) and the interaction between adjacent structures is
minimised (i.e. there is no leakage between structures).

For 2-D images, a 1-D RMF can be applied at any chosen angle, by covering the image
with lines at this angle, ensuring that every pixel belongs only to one line, i.e. Bresenham
algorithm [6]. By performing 1-D Directional Recursive Median Filtering (DRMF) at
several orientations, a scale-orientation signature (������� ��) can be built for each pixel
��� ��. The signature is a 2-D array in which the columns represent measurements for
the same orientation (�), the rows represent measurements for the same scale (�), and
the values in the array represent the change in grey-level at the pixel, resulting from ap-
plying a filter at the scale and orientation corresponding to the position in the array. The
grey-level changes are measured with respect to the image filtered at the next smaller
scale at the same orientation. A locally brighter structure is represented by positive val-
ues in the scale-orientation signatures, whilst locally darker structures result in negative
values (small values are more indicative of noise). An example of such a signature can
be found in Figure 1 (for display purposes all signature values equal to zero have been
left blank). The columns represent measurements for the same orientation and the rows
represent measurements for the same scale. It should be noted that a residual value is not
incorporated in the signature. The residual value is the grey-level value left after the final
filter has been applied. In general, when the final scale is equivalent to the image size,
the residual value is similar across the image and equal to the mean intensity, but can be
orientation dependent.
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Figure 1: Typical scale-orientation sig-
nature from a linear structure.
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Figure 2: Illustration of the basic thresh-
olding approach (with transportation).

This DRMF approach results in a large set of images, each containing one particular
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part of the scale-orientation range, all extracted from the original image, i.e.

���� ���
�

���������

����� �� �� ��� � (1)

where � is the set of scales and � is the set of orientations. Every image, ���� �� �� ��,
has structures up to scale � at orientation �. All the scale-orientation signature infor-
mation can be derived from this set of images. Every signature entry is determined by
������� �� � ���� �� �� �� � ���� �� � � Æ�� ��, where � � Æ� indicates the scale after �.

2.1 Reconstruction

When using the approach described in the previous sections a reconstruction of the orig-
inal image is trivial, as the information at one particular orientation is sufficient for this
process. This can be achieved by selecting any orientation (� �) and performing a summa-
tion over all the scales, i.e.

���� �� �
�
���

������� ��� (2)

which is equivalent to a column summation for every scale-orientation signature. The
choice of orientation is arbitrary as each gives the same result (where it is assumed that
the residual value is used in the reconstruction process).

However, as soon as an approximation, either to remove noise, filter out particular
aspects or for generalisation purposes (e.g. dimensionality reduction by using principal
component analysis [11]), is used the signatures reconstruction becomes less trivial and
aspects of this will be discussed in the remainder of this work.

From a reconstruction point of view this now means that when using Eq. 2 the results
can be orientation dependent. This can partially be circumvented by determining the
reconstruction value for all orientations and obtaining the maximum (or median, or mean)
value of these results. When considering the maximum Eq. 2 can be rewritten as

���� �� � ��	
��
�

��
�

�

������� ����

�
� (3)

2.2 Thresholding

Thresholding in scale-orientation space is achieved by setting small values of � ������ ��
equal to zero. For well behaved image structures this means that the integral in Eq. 3
reduces to

� �����
����

��, which indicates that both the top as well as the base of the structure
is removed and only the large scale-orientation signature values in between � ��� and
��	
� are preserved (see also Figure 5 in Section 3.5).

2.3 Transportation Aspects

The approach described in the previous section has the undesirable effect that the base
of the image structures are removed as these tend to be represented by small values. Our
second approach partially addresses this problem by allowing transportation of low values
(below the threshold) at large scales to high values (above the threshold) at lower scales.
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Effectively this means that at a particular orientation the extend of an image structure is
determined by the signature values above the threshold and that the base of that structure
is preserved. In effect this should result in an improved signal to noise ratio. To avoid
discontinuities in the image structures transportation is only allowed in the direction of
decreasing scale values. For the reconstruction this means that the integral in Eq. 3 can be
written as

�
�

����
�� and it should be pointed out that this is only the case when

� �����
����

��

is finite else the base
�
�

�����
�� is not added.

3 Image Processing in Scale-Orientation Space

In general thresholding/filtering is based on discarding values that are below the threshold
and results in binary images, or low values are discarded whilst keeping all the values
above the threshold [8].

However, thresholding or filtering in scale-orientation signature space is less trivial.
There are a number of issues that will need consideration. The scale-orientation signatures
can contain both positive and negative values, so a decision has to be taken if these should
be treated equally or that only positive values should be taken into account. A second
aspect that will need to be addressed is the fact that the spacing in the scale dimension
in the scale-orientation signatures does influence the results. This should be clear when
an extreme case is considered where the scale dimension covers all the integer values
between zero and the maximum scale. In this case it is very unlikely that the values in the
scale-orientation signatures are large and the thresholding will result in very sparse data.
This aspect is addressed by using a set of scales with a logarithmic distribution.

3.1 Thresholding - Manual Approach

In our most basic approach to the thresholding in scale-orientation signature space all the
values smaller than a threshold are set to zero. An example of this, based on the scale-
orientation signature shown in Figure 1, can be found in Figure 2, where the threshold
used is equal to two and transportation has been used. As both higher (bright) and lower
(dark) than average intensity image structures are important the thresholding is applied in
an absolute sense.

3.2 Thresholding - Automatic Approach

Instead of using a fixed threshold value for all the signatures we have investigated a more
local/adaptive approach, where the threshold value is determined at a single signature (and
hence pixel) level. The threshold value is determined by two basic assumptions. The first
assumption is that for a signature to be part of an image structure it should have signature
values at all orientations (i.e. none of the columns of the signature contains only zeros).
This assumption is not true for image structures which are larger than the largest scale
used in the signature extraction stage, e.g. any straight linear structure which extends
between two image boundaries. If any of the columns only contain zeros all signature
values are set equal to zero, i.e. making the assumption that it is of no interest. For the
signatures that do have values at all orientations a threshold needs to be determined. For
such a signature to remain a structure signature the all orientations rule set out above
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needs to be preserved. To do so the highest value for each orientation is determined and
of these the lowest is chosen to be the threshold value. For the signature shown in Figure 1
the resulting thresholded signature can be found in Figure 2 (which in this case is equal
to using a fixed threshold value equal to two).

3.3 Filtering - Single Scale

Filtering in scale-space becomes almost a trivial exercise with scale-orientation signa-
tures. After selecting a particular scale all the signature values above that scale are
checked (those at a smaller scale are set to zero). Transportation at a particular orien-
tation is only allowed if there is a non-zero (or positive) value at the selected filtering
scale. This means that structures at the selected scale are preserved whilst smaller and
larger scale structures are suppressed. An example of such a filtering approach, at scales
six to seven, applied to the signature shown in Figure 1 can be found in Figure 3 (it should
be noted that this process not necessarily preserves the all orientations rule as described
in the previous section).
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Figure 3: Illustration of filtering.
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Figure 4: Illustration of thinning.

3.4 Thinning

It is possible to extend the scale-space filtering to include a range of scales. Especially
when this is done for a band at the lower scales the resulting reconstruction only contains
image structures over a limited set of scales which is closely related to thinning in normal
image space. In this case a maximum scale is selected above which all the signature
values are transported to the largest scale signature value available (i.e. if no signature
values at or below the selected scale exist no transportation occurs). An example of a
resulting signature, using the scale range from one to five, based on the signature shown
in Figure 1 can be found in Figure 4.

3.5 One Dimensional Example

To visualise some of the aspects described so far a one dimensional Gaussian function
will be used which is shown in Figure 5a. The effect of thresholding (see Section 2.2)
(without transportation) in scale-orientation space (in essence this is just scale space as
there is no orientation dependence for this one dimensional example) can be found in
Figure 5b, which indicates that the top and the base of the Gaussian function have been
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removed. When transportation (see Section 2.3) is added to the thresholding the base of
the Gaussian function is preserved where the basic thresholding had a non-zero response.
This is shown in Figure 5c. The effect of single-scale filtering (and transportation) (see
Section 3.3) is shown in Figure 5d, which shows that the top of the Gaussian function has
been removed but the base at the selected scale has been preserved. For this simple ex-
ample this results in a binary response. Finally, the top of the Gaussian that was removed
in Figure 5d can be preserved by using the thinning as described in Section 3.4 and the
resulting one dimensional function can be found in Figure 5e.
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Figure 5: (a) A one dimensional Gaussian function. Processing of the Gaussian function
using: (b) basic thresholding, (c) thresholding in combination with transportation, (d)
single-scale filtering, and (e) thinning.

4 Evaluation

The evaluation of the developed approach is based on a standard set of images that have
been used before in the evaluation of the detection of linear structures [12, 9]. This will
cover both quantitative and qualitative evaluation aspects. In addition, qualitative results
based on mammographic data are presented.

4.1 Standard Image Set

The performance of the methods described above is evaluated on a set of synthetic images
designed to test the application to digitised mammograms, an example of which can be
found in Figure 6. Linear structures were generated at known positions and orientations.
The profiles of these linear structures were generated by a statistical model trained on
spicules (the linear structures which radiate from spiculated lesions) and blood vessels,
both of which are linear structures found in mammograms [10]. The line patterns were
superimposed on real mammographic backgrounds. Figure 6 shows the patterns superim-
posed on a dense mammographic backgrounds. This set of synthetic images is representa-
tive of real mammographic linear structures as these are modelled on real mammographic
linear structures and real mammographic background texture.
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Figure 6: Artificial lines (for display
purposes the image has been intensity
stretched).

Figure 7: Reconstruction based on ab-
solute thresholding in combination with
the transportation approach.

The results of thresholding in scale-orientation space (see Section 3.1) applied to the
image shown in Figure 6 can be found in Figure 7. Here we have used a constant threshold
value equal to two. It should be clear that the linear structures have been enhanced, but
it should also be mentioned that some of the background noise has not been suppressed.
The remaining background noise is mainly made up of small blob-like structures.

Based on the image shown in Figure 6 the result of using scale based filtering (see
Section 3.3) can be found in Figure 8. This shows only structures with a width of respec-
tively three (Figure 8a) and six to seven (Figure 8b) pixels have been reconstructed. It
also shows that, especially at the lower scales, this means that the image structures have
been broken up which indicates discontinuities in scale space (which are caused by the
way scale-space is sampled).

(a) (b)

Figure 8: Reconstruction based on scale filtering where (a) scale equal to three and (b)
scale equal to seven.

Applying thinning (as described in Section 3.4) to the original image gives the recon-
structed images shown in Figure 9. Here the maximum scale is set to three and seven. This
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results in respectively image structures covering the scales one to three and one to seven.
Allowing the larger scale range results in better connected image structures. But it should
be clear that even for the lower scale range most of the image structures are connected
and this shows a substantial improvement over the single scale results (see Figure 8a).

(a) (b)

Figure 9: Reconstruction based on thinning where (a) scale equal to three and (b) scale
equal to seven.

ROC curves were obtained by varying a (reconstructed) pixel-intensity threshold and
comparing the resulting pixel labels (line versus non-line) with ground truth. The closer
the curve approaches the top left-hand corner (detection of all true positives at the cost of
zero false positives) the better the detection [5]. In general, ROC curves will have a false
positive range from zero to one. However, for display purposes we have reduced this and
used a logarithmic scale.

The ROC curves associated with the images shown in Figures 7 - 9 can be found
in Figure 10. These results show that the simple processing in scale-orientation space
provides a significant improvement when compared with results based on non-processed
scale-orientation signatures. However, the various processing techniques do not give a
substantial difference in the ROC results, which can be explained by the fact that in all
cases non-structures are suppressed and only small threshold values are used.

It should be mentioned that this processing in scale-orientation signature space pro-
duces results that are a significant improvement on previously published methods which
were evaluated on the same standard image set [12]. To illustrate this we have included the
ROC curve based on a non-linear line detection approach [12]. The ROC results based on
filtering in scale-orientation space are similar to those based on the statistical modelling
of the non-processed scale-orientation signatures [9]. This indicates the likelihood that all
the statistical modelling was doing was to remove non-structure (sparse) signatures and
small signatures values (see also the results in [11, 9]).

4.2 Mammographic Data

In Figure 11a a region from a mammographic image, containing a cluster of micro-
calcifications and a number of linear structures, is shown. The resulting of thinning using
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Figure 10: ROC classification curves, where the results are based on: the original sig-
natures (�), and reconstruction with transportation based thresholding (�), filtering at a
single scale (�), and thinning using a range of scales (�). The dashed line represents
detection based on a non-linear detection approach [12].

scales one to seven results in the image shown in Figure 11b. This shows a clear enhance-
ment of the linear structures.

5 Discussion and Conclusions

We have developedfiltering techniques in scale-orientation signature space. Three distinct
approaches were investigated. The first approach was based on the basic thresholding of
the values in the scale-orientation signatures and allowed for the transportation of signa-
ture values below the threshold at large scales to signature values above the threshold at
smaller scales. This results in a preservation of the base of image structures. The remain-
ing approaches use a selected scale range for the filtering process. Again, transportation
as described above was allowed to improve the enhancement process.

All three methods show a distinct improvement in the enhancement of image struc-
tures when compared to the original image set and also showed a substantial improve-
ment when compared with other detection approaches [12]. In addition, based on the
similarity in ROC results and other publications [11, 9] it seems likely that the statisti-
cal modelling of the original signatures [9] basically has the same effect as the presented
scale-orientation space filtering, but this will need to be confirmed by future research.

In addition, for mammographic data visual evaluation showed a realistic enhancement
of linear structures.
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Figure 11: (a) Mammographic region and (b) reconstruction based on thinning covering
scale up to seven.
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