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Abstract

The optimization problem of finding the best match for a thin-plate block
of multi-texture 3-D data in a supervised framework is studied in this pa-
per. The textures are modelled as realizations of Gaussian Markov Random
Fields (GMRFs)on 3-D lattices. The classification of the central point of the
data block is performed by calculating the class probability mass function
(p-m.f.s) for the block given the different texture models. The Kullback-
Leibler measure is proposed for the minimization of the difference between
the p.m.f.s distances of the

The three-dimensional (3-D) segmentation of volumetric imagery poses
the challenge of estimation and compensation for the existing inter-slice dif-
ference within a multi-texture 3-D data. In this paper we propose a novel
method to identify the difference field by Kullback-Leibler minimization of
the distance between the class probability mass functions (p.m.f.s), calculated
at thin-plate 3-D blocks of data, centered at the points of interest. and fast
FFT-based technique is presented for calculation of the probability density
function (p.d.f.) of the data given the model. This facilitates the calculation
of the classification p.m.f.s. in a supervised framework.

The estimated difference field is used to enhance the performance of a
computational-volume based 3-D GMRF segmentation algorithm. The per-
formance of the overall method is illustrated with a simulation study of mo-
saic of synthetic 3-D textures and MRI images of human brain.

1 Introduction

In many applications (MRI, CT, etc) the segmentation of volumetric imagery is an im-
portant task. The 3-D Markov Random Field (MRF) has been successfully applied for
segmenting such 3-D images [1, 2] using region growing approaches.

The 3-D Gaussian Markov Random Fields (GMRFs) has proven a useful model for
3-D textured data [3]. An algorithm we proposed uses a computational volume- based
parameter estimation of the model at selected lattice points assuming texture stationar-
ity. The method has the advantages of exploiting the easy implementation of the matrix
computations, which follows from the volume geometry. Its drawback is evident when
the violation of the above mentioned assumption, is present in regions overlapping data
belonging to two or more texture classes. The overlapping along the third dimension can
be seen as caused by the shape evolution of different anatomical structures in MRI for
instance.

To cope with the problem, difference-compensated computational volume technique
has been developed, where adaptation in the temporal direction is implemented in order
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to follow the shape evolution [4]. Thus, the texture stationarity assumption is protected,
which, in turn, leads to better parameter estimation and the following classification.

In this paper, we propose a new technique for estimation of the difference field present
in volumetric data. The method is based on minimizing the Kullback-Leibler distance
(KLD) between the class p.m.f.s for 3-D blocks of data, centered on lattice points, can-
didate for matching. For construction of the p.m.f.s we need to calculate the p.d.f.s of
the blocks given the GMRF parameter estimates. This is done using a novel approach
for p.d.f. computation, based on 3-D FFT implementation of the computations involving
circulant matrices of level three.

The resulting classification scheme is used for evaluation of the shape evolution effect
described above and the segmentation is performed after compensation for this effect.

In Section 2 the relevant theory the of 3-D GMRF and the segmentation algorithms
are given, followed by presentation of the joint p.d.f. computation in Section 3. The
construction of the class p.m.f.s. and the KLD minimization are explained in Section 4.
The overall algorithm is tested on mosaics of synthetic 3-D GMREF textures and MRI data
and the results are presented in Section 5, followed by conclusions in Section 6.

2 3-D GMRF-based Texture Segmentation

In this work we consider the finite-lattice MRFs. Let Q= {t =(7,4,k)[1< i< Ny,1 <
J<N3,1 < k< N3} bea3-Drectangular lattice. A 3-D MRF is a set of random variables
{X:,t € 2}, X; € {0,...,255} which represent the gray-level intensities at the points
(voxels) of 2. The MRF is defined in respect to a g-th order symmetric neighbourhood
geometry n?, which is determined by the 3-D Maximum Allowable Square (MAS) rule
[3]. The random variables satisfy the Markov property, i.e. the conditional probability at a
particular voxel depends only on the values of the random field within the neighbourhood
of this voxel:

P(X:|Xs,Vs € Q/{t}) = P(X¢| X5,VYs € ne), 1)

where the local neighbourhood is defined as ¢ = {s =t + r,r € p9|t,s € Q}.
The auto-normal model, known as Gaussian MRF (GMRF)[5] has conditional p.d.f,
which is normal distribution given by:

P(X,|X,,Vs € Q/{t}) x

1
exp <—202 Xo— ) = Y 0ro(Xs — o)} ) )

sEN:

Here, 0; s are the symmetric interaction coefficients (auto-correlation parameters), p and
o are the conditional mean and variance.

The gray level at voxel ¢ under the GMRF modelling can be represented as linear
combination of the gray levels of the neighbouring pixels plus an additive Gaussian noise
Et ~N (O, g % )Z

=i+ Y 00,s(Xs — ps) + Ei. 3)

SEN:

GMREF is a model for homogeneous texture. If the texture is stationary, the parameters
are independent of . The model parameters can be estimated by solving the system
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of standard normal equations of form (3), written for each voxel within a rectangular
parallelepiped-shaped computational volume w/, centered on ¢ (see Fig. 1). It is assumed

~T —~
that the texture is stationary within w;. The solution is a feature vector £, = (8, , iz, o7)”
assigned to ¢ obtained by Least Squares (LS) technique [3]. This method will be refereed

to as the -3D non-compensated or conventional segmentation.

Figure 1: Conventional 3-D processing volumes

The conventional 3-D supervised segmentation has three main stages: learning a code-
book of reference feature vectors representing each texture C = {c1,...,cr }(T is the
number of textures), LS estimation and classification in the feature space when a label
field Ly = 1; € {1,2,...T} is inferred. The classification is based on minimization of
the distance between each feature vector and the codebook entries. The label assign-
ment is Lt = [, such as | = argmin; ||c; — £;|| [3]. The label field can be evaluated
at all points of €2 (pixel-by-pixel (PBP)) or at a sparse lattice Q) gy as required by a
computationally-effective algorithm such as the Recursive Unanimity Rule (RUR) [3].
RUR allows significant accelerations to be achieved in homogeneous regions with the cal-
culations concentrated recursively in the regions of inter-texture boundaries. The method
enhances the label connectivity, avoiding the appearance of small isolated regions (holes)
in the label field [4].

2.1 Difference-Field Compensation

The advantage of the conventional 3-D GMRF-based approach over 2-D GMRF-based
independent slice segmentation has been shown in [3]. The method, however, is not
robust against violation of the texture stationarity assumption caused by shape evolution
of textured object cross-sections along the third dimension. This causes deterioration of
the classification accuracy.

To evaluate the shape evolution we estimate a correspondence vector d ¢, between t
and its image t', d; =t' —t, which characterizes the inter-slice difference. An estimate of
the difference field D={d;},t € Q allows construction of a compensated computational
volume wy (see Fig.2).

Thus the LS estimates are more reliable, since the stationarity assumption is better
protected, leading to a significant improvement of the segmentation as shown in [4, 6],
and in Section 5 of this paper. This method will be referred to as compensated approach.

The overall segmentation framework for the compensated approach is illustrated by
the block diagram, shown in Fig.3.
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Figure 3: Block diagram of the overall framework

3 GMREF Joint Probability Computation

The joint probability of a stationary image X = {X,¢ € Q} of size n; X ny X ng, may
be derived from (3). It is a multivariate normal (MVN) distribution with covariance matrix
S =02B7' [7]:

_ VdetB (x —p)"B(x —p)
p(x) = Nk exp | — 952 ; 4)

pisanm x 1 vector of conditional means, and B = [b, ;] is the m X m interaction matrix
with elements b; ; = ¢ s — 6 s with 6; ; = 0. The necessary and sufficient condition for
(4) to be a valid p.d.f. is that B be symmetric and positive-definite [7]. Such a condition
(extended for 3-D GMRFs), dictates that the valid parameter subspace be > 0] < 0.5
[8].

Under a toroidal boundary assumption in all dimensions, the B matrix is a circulant
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of level 3 (block-circulant, which blocks being block-circulant matrices)

B = circulant(By,...,By,...B,;)
B, = circulant(B1,...,B1j,...,Bin,); (5)
B:,;, = circulant(bs),t=10(i,j,k),s € n,
i = l...n,j=1...no,k=1...n3.

The B matrix is sparse and symmetric as well, as a direct consequence of the Markov
property and the symmetric neighbourhood structure.

It is known that any circulant and circulant of level 2 matrix can be diagonalized by
the 1-D and 2-D unitary DFT respectively [9, 10]. Similarly a circulant of level 3 can be
diagonalized by the 3-D unitary DFT. This leads to an efficient FFT-based algorithm for
matrix by vector multiplication. If we consider the n 1.ns.n3-length vector x1 = x—pu
obtained by raster-scanning the 3-D block of data X ;, B be represented by 3-D array
A(i, 5, k) = [bfg] of dimensions n1 X ny X ng, the product xI B is equivalent to 3-D
circulant convolution of A and X;:

ni1 N2 N3

Xo(i, 5, k)= Y Y Al—i,j—j' k= k)X (@@, 5, k).

i'=1j'=1k'=1

Not that A(i,j,k) = A(i modny,j modns, k modns). As an extension of the 2-D
circulant convolution theorem [9], it can be shown that the DFT of the 3-D circulant
convolution of two arrays is the product of their DFTs. Using the fast 3-D FFT we can
achieve faster multiplication by using the identity:

X, = F HF(Xy) . F(AL)), (6)

where F = FQ F @ F denotes the 3-D DFT, F !- the inverse 3-D DFT ,F is the
Fourier matrix [10], ) is the Kronecker product and ’*.” means element by element
multiplication.

4 Difference estimation

Lets X be a 3-D block of homogeneous GMRF texture andlet C =c € L = {1,...,T}
be a class discrete random variable taking values among the texture indexes in an or-
dered set. When a class membership uncertainty exists, one can evaluate the condi-
tional probability (likelihood) of x given the model class ¢ and its reference parameters

re = [07 . pe, 02]"

_ vV det BC (X B P’c)TBC (X B pc)
p(x|e,re) = WGXP - %02 . @)

Eqn. (7) may be evaluated using the algorithm described in Section 3. The conditional
probabilities p(x|c, r..) evaluated for all classes may be normalized to yield the class p.m.f.
p(c, re|x) assuming a uniform prior for C.
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4.1 Kullback-Leibler Distance-based Similarity Measure

The Kullback-Leibler Distance (KLD) has been successfully used as a texture similarity
measure [11]. To find the best match ¢’ of the current voxel ¢ among all candidates, we
evaluate KLD (or relative entropy) between the class p.m.f.s p and p' as:

D(pllp') sz log ®)

where T is the number of textures present. For our purposes p represents the current, and
p'- the candidate, site. KLLD gives us a measure of similarity between the overall profiles
of the class p.m.f.s.

4.2 Matching

A 3-D thin-plate volume-based matching technique for estimation of the difference field
D is proposed using the ideas above. Consider two 3-D blocks of size L x L X 3,
namely X; and Xy, centered at ¢ and at a candidate point ¢¢ at slice k' respectively.
Let the associate class p.m.f.s be p;(.) and p:e(.). The difference vector d; at site ¢
is estimated by a matching procedure, which aims to find the best candidate ¢, mini-
mizing the KLD between the class p.m.f.s, calculated at the two blocks. Hence ¢’ =
argminge K LD (p¢||ps<). The matching is performed by examining candidate blocks
in slice k" according to a search strategy within a predefined restricted set of candidate
points.

5 Simulation results

The proposed method has been tested on synthetic images for a two and a three class
segmentation problem. Some preliminary results on real MRI data are presented as well.

5.1 Two class problem

Two 2nd order 3-D textures of size 128 x 128 x 11 were generated using the 3-D GMRF
sythesis algorithm given in [3]. The GMRF parameters were chosen to be similar in the
x,y dimensions and different in the z direction, which implies that z-going texture corre-
lation will be key disriminants during classification. A texture mosaic volume was created
using a ground-truth mask simulating translation of a circular object with displacement
of (+5,+5) voxels between adjacent slices. On the first row of Figure 4 the ground truth
mask model and the middle slice of the data volume are given.

It can be seen that it is impossible to distinguish visually the two textures. The 2-D
segmentation (using 2nd order 2-D GMRF [3]) of the slice is given on the second row,
left. The method fails, because the subset of parameters, describing the interaction in the
x — y plane are not enough to provide good estimates. The results of the 3-D conventional
(non-compensated) segmentation vs. the compensated methods provided the exact and
the estimated difference fields are shown on the second row (left) and on the third row
the with a ground truth mask superimposed. The results shown are obtained after using
a maximum depth d = 11 of the computational volume w¢, except for the estimated
field segmenation, because the difference field is obtained using ’thin-plate’ volumes as
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described in 4.2. The figure clearly illustrates the advantages of the 3-D over the 2-D
GMRF model as well as the compensated over the conventional approach.

The mean classification accuracy for different depths of the compuational volume are
given in Figure 5.

Figure 4: First row: generation mask and slice 6 from synthetic data set; Second row:
left:2D and right:3D non-compensated segmentation results with superimposed mask;
Third row: 3-D compensated with the known (depth 11) and with the estimated difference
(depth 9)

The general trend of the curves shows significant improvement of the classification
performance when the difference field is taken into account. Increasing d the degree of
stationarity assumption violation increases causing the conventional approach to fail. In
contrast, the compensated approach shows better performance due to the more reliable
LS estimates, obtained from a bigger stationary texture volume. The compensated seg-
mentation using the proposed approach for calculating the difference field shows a good
performance, the error curve tending towards the best possible one.
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Figure 5: Two class problem: % mean misclassification for different 3-D segmentation
schemes.

5.2 Three class problem

More complicated simulation using 3rd order 3-D GMREF and 3 class texture mosaic was
performed. The simulations showed that we need to increase the model order g with
increasing the number of textures 7'. A higher ¢ provides bigger neighborhood support
and hence more 6 parameters which adds extra dimensionality in the feature space. The
textures chosen have very similar x — y parameters and differ by the z-going correlations.
The ground truth mask model, the middle slice of the gray-level data and the segmentation
results are illustrated on Figure 6.

The results showed similar performance trends of all compared methods as the two
class problem. The percentage of misclassification for the given slice was 8% for d = 3
for all 3-D methods, dropping to 0.79% for the compensated method given the exact
difference field, and only to 5.3% for the compensated one give the estimated field, which
is improved only by 0.04% from the non-compensated method.

In both two and three class problems the proposed minimizing KLLD between the class
p-m.f.s showed excellent results when classifying homogeneous textures and very good
results in overlapping textures regions.

5.3 MRI

The segmenataion method has been tested on a subvolume of size 128 x 128 x 9 from a
real MRI data sequence of a human brain. In Fig7, the concsequtive slices of the data set
are shown.

In Fig.8 the main segmentation results for the middle frame of the volume are illus-
trated. The left image shows the result (depth 9) after non-compensated approach was
used. The right image shows the segmentation result (d = 9)after the difference field
was estimated and compensated for. The better performance of the latter for the maxi-
mum depth can be clearly seen. We have noted such improvement in cases of all different

380



A
%ﬁ

2002

depths of wy (wy).

6 Discussion

In this paper we propose a new FFT-based technique for evaluation the joint 3-D GMRF
p.d.f. It proves to be a powerful computational engine for a 3-D texture classification
tasks. A complete framework for difference field estimation in a 3-D multi-textured data
has been developed. It can be used to enhance significantly a 3-D supervised segmen-
tation scheme and shows very good results on synthetic volumetric images and real real
Magnetic Resonance Images (MRI) of a brain.
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Figure 6: First row: generation mask and slice 6 from synthetic data set; Second row: 2D
and 3D non-compensated segmentation results with superimposed mask; Third row: 3-D
compensated with the known (depth 11) and with the estimated difference (depth 5)
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Figure 7: The slices of the MRI sequence

Figure 8: Left: 3D non-compensated result for the middle slice, depth: 9; Right: 3D com-
pensated result, depth: 9;
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