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Abstract

A qualitative image description grammar with automatic image fitting
and object modelling algorithms is presented. The grammar is based on as-
signing a square sub-region of an image one of a finite number of qualitative
labels, based on the occurrence of object boundaries within this region and
how these intersect the region boundary. In the general case there is an in-
finite number of such labels, however the use of a multi-scale approach al-
lows a finite (small) number of labels at each scale. This makes the problem
tractable within a constraint satisfaction type framework. Constraints are put
on neighboring labels based on the premise that all object boundaries are con-
tinuous, having no ending within an image. A minimum description length
(MDL) approach is suggested for description hypothesis selection (based on
colour histograms) and methods for (constraint based) hypothesis genera-
tion/adaption and (Hidden Markov Model based) a-priori shape modelling
are presented.

1 Introduction

The problem of image and image sequence interpretation is often divided into two tasks;
i) extracting visual information, and ii) reasoning about the scene. Extracting visual in-
formation is often performed using a model based approach. Models are, in general,
quantitative descriptions of object or scene characteristics. These descriptions are often
encapsulated as statistical distributions (e.g. the point distribution model (PDM) [14]).
Increasingly within the spatial reasoning community qualitative representations are being
used (see [3] for an overview) for their simplicity (and thus power) when used for formal
reasoning. When dealing with real scenes these qualitative descriptions are formed from
quantitative descriptions produced by an (often imperfect) low level system. This can lead
to errors in the qualitative description, for example; if two close objects are being tracked
using PDM’s the qualitative property ‘disjoint’ formed from this may actually be more
related to the noise of the tracking process than the actual relation.

In this paper a qualitative grammar for representing visual information (in terms of
object boundaries) is presented. Qualitative Relations such as joint/disjoint etc. may
be directly extracted from this description. Qualitative descriptions can, to a certain ex-
tent, encapsulate some of the observational uncertainty often modelled using statistical
techniques in machine vision systems. However, we use statistical techniques alongside
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qualitative representations in order to fully deal with uncertainty. This can be a powerful
combination, as demonstrated by Fernyhough et al. [6].

A minimum description length approach [12] is taken to hypothesis selection. Po-
tential hypotheses are generated based on a set of constraints for valid hypotheses using
a guided constraint satisfaction programming (tree search) technique. This is applied at
multiple scales from course to fine, with constraints being propagated from one level to
the next. Tree search constraint satisfaction methods are an alternative to stochastic search
procedures (such as particle filters [8]) in many machine vision applications. Cucchiara
et al. [4] use such a search technique for model based image analysis, and even have a
qualitative element to their model. Further back Barrow and Popplestone [2] use a sim-
ilar technique to match ‘image description graphs’ and ‘object model graphs’ for object
recognition (a theme taken up by several other researchers since). Waltz (described in [1])
applies constraint satisfaction to line labeling problems.

A priori shape information may be encapsulated into the grammar by the use of hidden
Markov models that model a (variable length) sequence of edge descriptors in a statistical
manner.

2 A Qualitative Grammar for Image Description

The purpose of the grammar presented is to describe an image as a set of logically con-
sistent object boundaries. To achieve this the image is divided up into square regions.
The aim of the grammar is to provide a qualitative description of each region based on
the object boundaries and their intersections with the square region boundaries. Given an
arbitrarily complex image there is an infinite number of such descriptive labels. If the con-
straint that only a single object boundary may intersect a side of a particular square region
boundary is introduced this number becomes finite as illustrated in figure 1. It should be
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Figure 1: A Qualitative Grammar

noted that these labels are qualitative, based on which square region edges that the object
boundaries intersect. Figure 2 illustrates several examples which may be described by the
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Figure 2: Quantitative Examples Described by the Second State

Objects where multiple object boundaries intersect a side of a particular square region
boundary cannot be represented at that resolution, however extending the grammar to
multiple scales allows a compact description of scenes with arbitrary topology. This is
achieved by repeatedly dividing square regions into four equal squares. The resolution
required to represent particular objects within a scene is application specific and, for many
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high level scene/object analysis tasks, may be reasonably low. Figure 3 illustrates a scene
and it’s corresponding multi-scale description.

Figure 3: Describing a View of Ayres Rock

The observant reader will notice there are no possible labels in which an object bound-
ary exactly intersects a corner of a square region. This is for two reasons; The first is a
philosophical objection. When describing a real life scene/object there is always uncer-
tainty (based on observation noise, quantisation errors etc.) and object boundary con-
figurations cannot be exactly determined (hence the need for qualitative and statistical
methods). States where object boundaries pass exactly through a square region corner
effectively define an exact location for a point on the boundary. This is against the phi-
losophy of the grammar. The second reason is more practical, based on the fact that
more states complicates hypothesis selection and makes this less computationally effi-
cient. These extra states are not necessary as existing states describe lines which are
infinitely close to these corners.

2.1 Rule based constraints on ‘Valid’ Descriptions

As stated previously valid descriptions contain no broken object boundaries (i.e. object
boundaries do not terminate within an image, although they may do at the image edge).
This constraint is enforced as a set of rules for adjacent square region descriptions. Figure
4.a illustrates a valid pair of neighbors, whereas Figure 4.b illustrates an invalid pair.

a) b)

Figure 4: a) Valid pair of adjacent region labels, b) Invalid pair of adjacent region labels

Rules for invalid/valid neighbors are given in Appendix A. In addition to these rules
about boundaries objects must be taken into consideration, for example figure 5 shows a
description that is valid based on the object boundary rules but invalid as a description of
an image. The description in figure 5 is invalid because two sub-regions of the top right
square region relate to the same object, but are divided by an object boundary. We define
a set of region equivalence rules to detect such occurrences by labeling sub-regions with
object labels. These rules define which sub-region pairs must relate to the same object,
which sub-region pairs cannot relate to the same object and which sub-region pairs for
which no constraints exist. These rules are described in Appendix B. Section 4 gives
details of a scheme to apply these rules within a hypothesis generation scheme.
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Figure 5: Invalid Description which does not break label adjacency rules

3 MDL Hypothesis Selection Using Colour Histograms

The purpose of the grammar presented in the previous section is the analysis of real scenes
and objects via digitised images (or image streams). This requires some way of ranking
how well a particular description describes a given scene or object. The Minimum De-
scription Length (MDL) [12] approach is taken based on colour histograms constructed
from pixels in the square regions (or in sub-regions of these). This approach is based on
premise that the best description of a system is the the one that can be coded with the
fewest bits. The total information content in a representation may be written as:

ITotal = IModel + IParams + IResidual (1)

Where Ipso4e1 18 the information required to code the model, I pgqms the information
required to code the model parameters which describe the particular instance of the model
and I gesiduar 18 the information required to code the residual (the difference between the
model and the reality). Shannon [13] states that, given an optimal coding scheme, the
number of bits required to code a probabilistic model/system is given as the entropy of

the system:
Entropy = Zp(n) log, p(n) (2)

Entropy is a convenient measure of information as it is simple to compute and inde-
pendent of coding method. For these reasons this forms the basis of our model selection
criteria. This criteria is based on the average information required to code a pixel given
the grammar, a description based on this grammar and a set of colour histograms (one for
each sub-region). It should be noted that we have not found a way of directly evaluating
the qualitative description and, as such, it must be converted into a quantitative description
to build the colour histograms for evaluation. Figure 6 gives the quantitative sub-divisions
used for each qualitative state.
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Figure 6: Quantitative Region Sub-division Used in Hypothesis Selection

The qualitative subdivisions given in figure 6 were chosen as they are easy and effi-
cient to work with. Ideally an ‘optimal’ qualitative subdivision would be defined, based
on image information / MDL criteria, however this would be computationally expensive
and the current approach works reasonably well.

When calculating per-pixel ‘mean information’ it is necessary to consider the alterna-
tive models (sub-region colour histograms) for each region and the qualitative region label
given by the grammar. The model information (I p7,4¢; in equation 1) may be divided into
two parts i) the information required to code the model(s), and ii) the information re-
quired to code which model is selected. We ignore i) as this is a per-region rather than
per-pixel information and is as such negligible in comparison with per-pixel information.
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The second part is easily coded using the entropy formula in equation 2. The probabilities
(p(n)) in this equation are calculated in proportion to the relative size (in pixels) of the
sub-regions e.g. For the first state (no region boundary) the model information is zero (
1 x log, 1 = 0), and for the second it is 1 (0.5 x log, 0.5+ 0.5 x log, 0.5 = 1).

The parameter information (I py,qm, in equation 1) is based on the colour histogram
distribution (p(n)) and the relative size of the sub-regions (p s(m)) represented as:

M N
S p.(m) S pu(n) log, pi(n) 3

Where N is the number of bins in the histograms and M is the number of sub-regions.
The residual information (I gesiquqr in €quation 1) is divided into two parts; i) Quantisa-
tion error (for correct colour histogram bin classifications), and ii) mis-classification error.
Quantisation error may be estimated by estimating the distribution of colour values rep-
resented by a particular quantisation. Davies et al. [5] approximate this with a Gaussian
distribution, although in our case a limited range uniform distribution may be more ap-
propriate. In practice we ignore this information as, for histograms with a fixed number
of bins, it is constant. The second part of I gesiquar, histogram bin mis-classification er-
ror, is zero in a perfect coding system. However, this residual is a useful measure of
histogram compactness and, as such, we assume an imperfect coding scheme that codes
the histogram parameters (i.e. which bin is assigned to a given pixel) stochastically from
the corresponding region histogram distribution. (This would be the case for a coding
scheme with access to the region histograms only and no access to the underlying pixel
values.) As such the residual information is calculated by forming histograms of errors in
the three colour dimensions (red, green, blue) as:

prle)= Y pu(n) x pu(m) ©)
r(n)—r(m)=e

po(e) = > pa(n) x pa(m) )
g(n)—g(m)=e

py(e) = Z pr(n) x pp(m) (6)
b(n)—b(m)=e

Where r(n), g(n) and b(n) are the mean (center) values of the red, blue and green
components for colour histogram bin n. Residual information (I ges;quqr) is calculated as
the sum of the entropies of these three error histograms using equation 2.

4 Hypothesis Generation and Adaptation

The simplest approach to hypothesis generation is to generate random label sets or search
every combination of labels and to apply the rules described in section 2.1 to determine
validity. These approaches are far from computationally efficient. Our approach is to
only generate hypotheses that are valid. We take a constraint satisfaction programming
(CSP) approach to hypothesis generation [15], in particular we use a tree search with
value ordering and dynamic variable ordering. In plain English this means we build a
tree of partial hypotheses allocating a label to a particular square region at each level of
the tree. Figure 7 illustrates this for a simple image with two regions and two possible
labellings (A+B).

297



Figure 7: Hypothesis Generation By Tree Building

If at any point during the tree building a partial hypothesis becomes invalid with re-
spect to the rules described in section 2.1 branching from this ‘node’ ceases. The order
in which the nodes are branched is based on the relative description length of the partial
hypothesis (see section 3) with respect to the zero hypothesis (in every square region has
no boundary intersecting it) as:

Tpe= Y. Irota(z,y) — L(z,y) (7
Label(z,y)#?

The node with the lowest relative information I g.; is selected as the node to branch
next (the ‘value ordering’ approach). The region to be assigned a value at the branch
is selected as the region with the fewest remaining valid alternatives for that node (the
‘dynamic variable ordering’ approach). The actual hypotheses are assigned in arbitrary
order. In some circumstances it is possible to generate a complete set of hypotheses in
a short timescale, however this is not always possible. The use of the value ordering
approach allows the search to be terminated after a fixed number of complete hypothe-
ses have been generated (or a fixed time period has elapsed, or minimum information is
reached). The subset of valid hypotheses produced are generally the lowest in terms of
relative information and a substantial reduction in computational cost may be achieved
using this approach.

4.1 The Use of Attention Mechanisms

To reduce the size of the search problem Attention Mechanisms may be used. In dynamic
scenes motion may be used as a cue, however static images (which is our initial focus)
require an alternative. Our solution is to examine absolute entropy. Regions where infor-
mation (or some other measure such as motion) is higher than a threshold are considered
as potentially containing edges. All other regions are set to the zero state (no edge bound-
aries intersecting). In the analysis of dynamic scenes it is possible to propagate states
from the previous time-step based on motion information (i.e. if there is no motion the
state is unchanged).

4.2 Extending the Search to Multiple Resolutions

At low resolution (e.g. blocks of 32x 32 pixels in a 256x256 image) it is possible to com-
pute the complete set of valid hypotheses in a short timescale (often < 1 sec), and a useful
subset of these at approaching video frame rates. For higher resolutions the problem size
increases approximately with the order of the number of labels in the grammar and the
computational cost increases accordingly. One solution to this is to perform the search
at multiple resolutions. Information from one resolution may be propagated to the next
highest resolution, imposing initial constraints at the higher resolution to reduce the prob-
lem size. This is achieved using the best hypothesis from the lower resolution problem (in

298



terms of MDL criteria) and applying two sets of constraints. Firstly four square regions
at the higher resolution must contain an object boundary if the corresponding region at
the lower resolution does and must not if it doesn’t. The second set of constraints relate
to the possible labels at the higher resolution given the lower resolution label. A set of
rules (given in Appendix C) constrain these possible labels. This multi-scale approach
can reduce the problem size by many orders of magnitude.

4.3 Hypothesis Adaptation

The MDL hypothesis selection method described in section 3 is imperfect (as is almost
any hypothesis selection method for any model for real data). This can lead to errors
being propagated from one resolution to the next. A solution to this is to combine the
(constrained) global search strategy with a local adaptation scheme in which hypotheses
are refined locally. This is analogous to a ‘local search’ strategy such as used in Kass’
Snakes algorithm [10]. The approach we take is to refine small 3 x3 region blocks using
the relative information calculated as in equation 7 as a mechanism to select which set of
regions to refine. If this relative information is positive for the center region of the group
it is a candidate for adaptation. The adaptation process simply involves setting the state
of these 9 regions unknown and running the constraint satisfaction algorithm described
at the beginning of section 4. This is a highly efficient procedure as the total number of
regions is small (9) and constraints on valid labels are imposed by surrounding labels.

5 Incorporating A-priori Shape Statistics

As with other methods that include no prior shape information (such as snakes [10]) the
model/grammar fitting process can be disturbed by noise and clutter. A sensible approach
in such circumstances is to include prior information about the shape of possible objects to
be described. Such techniques are also useful for object identification. Cootes and Taylors
Point Distribution Model [14] does this for a parameterised shape model. Our model
contains a variable number of discrete parameters and, as such, their modelling technique
is not suitable. Our approach is to borrow a technique used for modelling variable length
time sequences, the Hidden Markov Model (HMM) [11]. One formulation of this, the
Cyclic Hidden Markov Model (CHMM) [9], is particularly applicable to the modelling of
object boundaries (closed or open). The transition graph for this is shown in figure 8.

4.

Figure 8: Architecture of the ‘Cyclic Hidden Markov Model’

Each state (node) of the CHMM represents a probability distribution of some charac-
teristic sequentially along the boundary. Initially we tried to model the state labels along
the boundary, however this approach was not rotationally (or scale) invariant. Our latest
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approach is to model the absolute distance from the centroid of an external object bound-
ary to the center of each square region along this boundary, using a continuous (single
1D Gaussian) distribution per state. If this distance is normalised (e.g. by division by
the maximum or mean distance) this representation becomes scale invariant in addition to
rotation and translation invariant. The Baum Welch optimisation algorithm [11] is used
to optimise the CHMM based on a training set. Currently we have no automatic way of
determining the number of hidden states required, however methods are suggested in [9].

6 Results and Evaluation

The grammar fitting process with no a-priori information included, as described in sec-
tions 2-4 was applied to images from a standard image database of objects [7] . Results
for 32x32 pixel block resolution are given in figure 9.
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Figure 9: Results for the Fitting Algorithm with no a priori models

The algorithm, as described, works well in uncluttered scenes at low resolution. At
higher resolutions, and in the presence of clutter, the model fits to the strongest region
boundaries, regardless of shape or topology. This is a problem exhibited by other methods
that include no a priori information such as snakes [10]. Section 5 describes the first step
to including a priori information in this scheme, model building. To evaluate this shape
modelling scheme sets of models were built of four of the objects in the database [7];
An Eraser, A pair of Scissors, a Stapler and a Set Square (Triangle). Between 5 and 10
examples of each item were used for this evaluation viewed approximately from above
and at several different rotations. The resolution used was 8x8 pixel squares. When a
model was compared to the object it was trained on ‘leave one out’ tests were used to
ensure no test objects were used to train the model used in that evaluation. The Viterbi
algorithm (see [11]) was used to compute mean log likelihood for 5 examples of each
object given each model. The results are given in figure 10 over all tests.

Data / Model | Eraser | Scissors | Stapler | Triangle
Eraser -0.577 | -1.873 -0.802 | -2.655
Scissors -5.582 | -1.400 -3.834 | -2.841
Stapler -0.838 | -1.680 -0.691 | -3.463
Triangle -7.760 | -2.096 -6.242 | -1.260

Figure 10: Evaluation of HMM Classification Accuracy (mean of mean log likelihoods)

The higher (less negative) the mean log likelihood the better the fit. Using this as a
classifier 19 out of 20 object examples were classified correctly with the only incorrect
classification classifying the Stapler as almost equally likely to be the Eraser or the Stapler
(-0.772 vs. -0.789 mean log likelihood). These are fairly similar objects in shape and it is
perhaps encouraging that this has been picked out.
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7 Future Work and Discussion

In this paper we have outlined a multi-scale, region based grammar for the qualitative
description of images/scenes. This is based on sub-dividing the image into square regions
and assigning a qualitative label to each. A constraint satisfaction type search procedure
has been proposed for hypothesis generation, and it has been shown how the minimum
description length principle may be applied to hypothesis selection. We have also shown
how a priori statistical shape information may be encapsulated within this grammar by
use of Cyclic Hidden Markov Models.

We have only just begun to explore the possibilities of the scene description grammar
presented. In particular the integration of the a priori model into the fitting process is still
to be done. Another work in progress is an improved attention mechanism. The attention
mechanism is crucial to the efficiency of the hypothesis generation search and the current
approach is not well suited to cluttered scenes. We also wish to apply this technique to
dynamic scenes / image sequences.
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Appendix A: Region Label Adjacency rules

These rules consist of two types; horizontal adjacency rules (for regions to the left/right) and vertical
adjacency rules (for regions to the top/bottom). In the following tables O represents invalid and 1
represents valid. The rows/columns relate to the states presented in figure 1 in the order presented

there.
Left
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Figure 11: Horizontal and Vertical Region
It should be noted that efficient application of these constraints may be performed by storing
possible labels and rules as a bitstream (with one bit per label) and using the bitwise AND operators

to impose constraints.

Appendix B: Sub-Region Object Equivalence Rules

Due to space constraints we cannot present the complete set of sub-region equivalence rules, how-
ever figure 12 shows the rules for regions lying to the right of a region given the second label given
in figure 1 as an example.

Reference
Sub Region

Region to the Right

: Constrained Same
W Constrained Different
u No Constraints

an

Figure 12: Sub-region Object Equivalence Rules for Regions to right of Label Region

Appendix C: Multi-resolution Propagation Rules

Due to space constraints we cannot present the complete set of multi-resolution propagation rules,
however figure 13 presents the possible states when the region label is the second label in figure 1
as an example.

Figure 13: Multi-resolution Propagation Rules for Second Label Region
The reasoning behind these rules is that no description at the higher resolution can be formed

that is qualitatively different from that at the lower resolution (except the zero hypothesis, which is
dealt with separately).
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