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Abstract

This paper describes an improvement to the dynamic programming approach for dense

stereo. Traditionally dense stereo algorithms proceed independently for each pair of

epipolar lines, and then a further step is used to smooth the estimated disparities between

the epipolar lines. This typically results in a streaky disparity map along depth disconti-

nuities. In order to overcome this problem the information from corner and edge matching

algorithms are exploited. Indeed we present a uni�ed dynamic programming/statistical

framework that allows the incorporation of any partial knowledge about disparities, such

as matched features and known surfaces within the scene. The result is a fully automatic

dense stereo system with a faster run time and greater accuracy than the standard dy-

namic programming method.

Code is available at: http://research.microsoft.com/�philtorr/

1 Introduction

Automatically generating 3Dmodels from images is an on going topic of research. A suc-

cessful image to model system has been developed by the research groups at Oxford [2]

and Leuven [12]. The method proceeds as a set of independent modules: �rst features

are extracted and matched, second projection matrices and calibration recovered, third a

dense stereo algorithm based on dynamic programming is used to extract depths and �-

nally a three dimensional model is constructed. It can be seen that this process involves

two representations, one sparse and feature based, the other a dense depth map yielded

by dynamic programming. Taking inspiration from [4], within this paper the dynamic

programming algorithm for recovering the dense depth map is discussed and various im-

provements to its speed and accuracy are advocated, which utilize the results already

obtained by the sparse feature matcher. It will be seen that this unique synthesis of the

sparse and dense matching techniques leads to improved results and run times.

The problem of obtaining dense correspondence along pairs of corresponding epipo-

lar lines may be solved using dynamic programming as an optimal path �nding problem

on a 2D plane. However there is no corresponding ef�cient method to impose a smooth-

ness constraint between the epipolar lines. The solution along consecutive epipolar lines

can vary signi�cantly, creating artifacts across depth discontinuities and in homogeneous

patches of intensity. An example of this is shown in �gure 1. It can be seen that indeed

the estimated disparity along the depth discontinuities is poor, despite being estimated by

a method that attempts to enforce inter epipolar line consistency [6] (the epipolar lines in

this case run roughly horizontally).
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There have been a variety of proposals to solve the �streaky� artifact. Henderson [10]

was the �rst to use dynamic programming to solve the structure from motion problem.

He proposed a sequential approach to impose inter epipolar line constraints, starting at

the top of the image and proceeding down through the epipolar lines using the result of

the previous as a guide for the next. This method however suffers from an avalanche

effect in the errors, in that small errors made early on can be magni�ed as the algorithm

progresses.

a b c

Figure 1: (a)(b) The left and right images of the Pentagon standard test stereo pair obtained from the CMU

VASC database (http://www.vasc.ri.cmu.edu/idb/). (c) the disparity map generated by the Cox

MLMH+V algorithm, typical of the dynamic programming approach [6] (lighter shades indicate larger dispar-

ity). What this disparity map does not show is those pixels that are unmatched (occlusion), this will be discussed

in more detail in Section 5. Note the lack of consistency between epipolar lines, which run horizontally.

Baker and Binford [1] popularized dynamic programming for stereo, explaining it in

terms of the Viterbi algorithm [7]. First using Viterbi to match edges, and then a second

round of Viterbi to match pixels between edges. However their method does not ade-

quately deal with occlusion and cannot recover if the edges are mismatched. A slightly

different idea is put forward for edgel matching by Ohta and Kanade [14] who propose

performing dynamic programming to solve a path planning problem in the product space

of the epipolar lines. To impose consistency between epipolar lines they extend the dy-

namic programming to 3D. This furnished only a sparse representation in terms of edges

however.

A problem with the above methods is that they do not deal with occlusion very well,

and have no mechanism for detecting occluded pixels. A series of methods [3, 6, 8]

that were developed roughly concurrently are all characterized by the modelling of an

occlusion process together with a shift to estimate a per pixel disparity (as opposed to

matching edges �rst as in [1, 14]). Cox et al [6] propose a purely maximum likelihood

approach, whereas Belhumeur [3] and Geiger et al [8] prescribe a Bayesian philosophy.

The other difference is algorithmic, all the methods can be cast as one of �nding the best

path through a graph, but the structure of the graphs are different. However, the methods

all operate on each pair of epipolar lines independently and rely on further iterative steps

to enforce smoothness constraints between epipolar lines.

Recently a new class of methods based on maximum �ow/minimum cut algorithms

has promised to generalize the dynamic programming approach to incorporate inter epipo-

lar line constraints. Roy and Cox [15] introduced a maximum �ow algorithm on an

undirected graph for stereo, however as pointed out in [11] their method does not re-

ally generalize dynamic programming and does not model discontinuities and occlusions
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as all pixels are forced to have a match. Ishikawa and Geiger [11] propose a max �ow al-

gorithm on a directed graph with the aim of imposing constraints between epipolar lines,

this approach seems interesting but there is still evidence of the streaky effect at depth dis-

continuities suggesting that the algorithm does not adequately enforce inter epipolar line

constraints. These algorithms are also very computationally intensive when compared

with the pair-wise epipolar line solutions.

None of these papers exploit external information that might already have been gath-

ered. Within this paper we explore a class of methods that combines the sparse but accu-

rate representations yielded by feature detectors and matchers with the dense representa-

tion yielded by dynamic programming.

This paper is laid out as follows: Section 2 explains the dynamic programming ap-

proach to dense stereo. Section 3 brie�y describes the feature extraction and matching

algorithms. It also suggests an improvement on the edge matching by making use of the

results of the corner matching. Section 4 shows how the corner and edge information

can be readily incorporated into the dynamic programming framework. A comparison of

the disparity map computations for our methods and for that of Cox et al [6] is given in

Section 5.

2 Dynamic Programming to solve stereo correspondence

Within this section the dynamic programming approach is described in detail, and it is

observed that the difference between the various methods that have been previously pro-

posed lies in the structure of the graph on which the path planning is performed. We then

lay out a statistical framework so that additional constraints are easily incorporated (in

Section 4).

All of the dynamic programming approaches to dense stereo described in the intro-

duction can be thought of in terms of a path planning problem on a graph. There are

two types of graph that are typically constructed differing in their connectivity. The �rst

(espoused in [6, 8, 14]) is a graph formed on the product space of the two epipolar lines

as shown in �gure 2, the second (advocated in [1, 3, 10]) is a graph formed on the product

space of one of the epipolar lines and the set of putative disparities. The two approaches

lead to similar results and the differences are small, in this paper we explore the �rst in

some detail and show how it can be improved, but the improvements are generic to both

methods. The path de�nes a mapping between the two epipolar lines for each correspond-

ing pairs of points e.g. pointsA andB as shown in �gure 2a. Uniqueness and the ordering

constraint (invoked by Cox) enforces the gradient of this path to be greater than or equal

to zero, as does the monotonicity constraint of Geiger et al [8].

In the Cox et al formulation horizontal or vertical parts of the path correspond to oc-

cluded regions that are seen in one image but not the other (sometimes referred to as half-

occlusions). However only diagonal moves can be made (�g. 2b) meaning that there is no

effective way to represent expansion or contraction of the image. Geiger et al [8] allow

for a wider range of changes in disparity between consecutive pixels together with a prior

on the changes (�g. 2c). For the most part this is only important to represent sub-pixel

disparity changes, however we found in our experiments that the increased computational

time for the sub-pixel calculation was not worth the slight increase in the quality of the

result.
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Figure 2: Dense epipolar matching. (a) the path de�nes a matching between the two epipolar lines, e.g. point

A is matched to point B. Horizontal and vertical arcs represent occlusions. (b) the connectivity of the graph

of the Cox et al method, each vertex represents a putative matching of a left and right pixel and has three input

arcs and three output allowing horizontal, vertical and diagonal moves. (c) the connectivity of the Geiger et

al method, here more complex movements can be made. (d) The input to a node for the maximum likelihood

model. Horizontal and vertical moves mean that a point is unmatched and are assigned cost c0, the diagonal

move means that the ith left pixel is matched to the jth right pixel with cost c(li; rj)

Statistical Formulation For ease of exposition it is �rst assumed that the two images

have been recti�ed so that the epipolar lines are horizontal and have the same length.

Given a pair of corresponding epipolar lines discretized into m pixels, feature vectors l

and r are extracted for left and right epipolar line respectively, with the result indexed by

the pixel: li; ri; i = 1 : : :m. Following [13] a matching process is de�ned Æij , such that

Æij = 1 if the ith pixel in the left view matches the jth pixel in the right, and Æij = 0
otherwise. The matching process can be represented by a m � m matrix � with ijth

element given by Æij . To ensure that each pixel has only one match each row or column

of � must sum to 0 (no match) or 1 (match). The likelihood of generating the feature

vectors l; r given a matching� is de�ned to be

Pr(l; rj�) = exp�

P
ij (Æijc(li; rj) + (1� Æij)c0)

�
(1)

where � is a normalization constant, c0 is the cost for occlusion [6], and c() is the match-

ing cost function (e.g. difference of pixel intensities or sum of squared differences). Dif-

ferent forms for c() arise naturally from different assumptions about the statistical form

of the errors, for instance maximizing normalized cross correlation for matching yields

the maximum likelihood match if the scaling of intensities between images is unknown.

The match matrix � that maximizes (1) and satis�es the uniqueness and ordering

constraints is the maximum likelihood matching. The optimal matching � can be found

by �nding the minimum cost path through the Cox et al graph shown in �gure 2b, the

costs on the arcs are assigned as in �gure 2d. By inspection it can be seen that the total

cost of the minimal path is the negative log likelihood:

Path Cost =
X

ij

(Æijc(li; rj) + (1� Æij)c0) + constant (2)

In this formulation it appears that there is no smoothness prior as opposed to the Geiger

et al formulation in which the smoothness of disparities along the epipolar line is made

explicit as a Markov Random Field. However examination of the structure of the graph

reveals that this is not the case. First disparity is de�ned. If Æij = 1 then the disparity
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is de�ned to be on the left epipolar line (i) = j � i and on the right epipolar line

�(j) = i� j. Assume that the (i� 1)th pixel in the left image is matched to the (j � 1)th
in the right, thus (i � 1) = j � i; a diagonal move in the graph from (i � 1; j � 1)
to (i; j) corresponds to the consecutive pixels represented by the nodes having the same

disparity (i � 1) = (i) = j � i, with cost c(li; rj). For the next pixel to have one

greater disparity this involves a move from (i� 1; j� 1) to (i� 1; j+1), which can only
be achieved by a vertical move followed by a diagonal move with cost c(li; rj) + c0 thus

the change in disparity is penalized by c0. Therefore, a change of k pixels in the disparity

leads to a penalty of kc0 which effectively encodes a smoothness constraint.

However all the dynamic programming algorithms that operate only on epipolar line

pairs give similar sorts of results, failing to adequately enforce inter epipolar line con-

straints. In the next sections it will be shown how to use the output of the feature matchers

to (a) enforce inter epipolar line constraints, (b) improve the accuracy of the depth map

and (c) speed up the algorithm.

3 Feature extraction and matching

Within this section �rst it will be shown how to match features and then how the matched

features can be used to improve the dense stereo. There are two types of features that

are used in this paper: corners (points) and edges. Corners are extracted using the Harris

corner detector [9] and then matched using cross-correlation, from this the fundamental

matrix is estimated and the matches re�ned using the type of robust methods (RANSAC

based) described [17].

Once the epipolar geometry is recovered Canny edges are extracted [5] in each image.

Next the recovered epipolar geometry is used to match the Canny edges based on the

curve matching algorithm of Schmid and Zisserman [16]. This algorithm scores two

curves that are putatively matched by cross-correlation of image intensities. The point-

to-point correspondence between the curves is determined by the intersection of epipolar

lines with the curves. For each edge all the edges within a search region in the next image

are scored as candidate matches. The score is simply the sum of the correlation scores

between points in correspondence along the curve divided by the length of the curve. The

best correlating curve is taken as being matched if its score lies above a threshold.

4 Matched features to guide dense matching

The feature matching algorithms described in section 3 yield a sparse set of disparities for

matched corner features and slightly less so for matched curves. This can be thought of as

a prior distribution for those points and it can be combined with the likelihoods developed

in section 2. In order to do this some new notation is needed. First the likelihood function

(1) is rewritten in terms of disparities. Let � be the set of disparities 1 : : : m for the left

epipolar line, as some pixels are occluded the null disparity is de�ned: i = ; if the ith
pixel is unmatched (; being adopted as the symbol for no match). Again, the disparities

must conform to the uniqueness and ordering constraints so that �nding an optimal � is

equivalent to �nding the optimal� i.e. Pr(l; rj�) = Pr(l; rj�). Thus (1) becomes

Pr(l; rj�) = exp�

P
i

�
c(li; r(i))

�

�
(3)
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with c(li; r(i)) = co, if (i) = ;, and � being the normalization constant.

In the maximum likelihood formulation it is implicitly assumed that there is a uniform

distribution on �, if we already have some indication of likely disparities from the feature

matchers then this is not the case. A Bayesian estimate of � would be

max
�

Pr(�jl; r) = max
�

Pr(l; rj�)Pr(�) (4)

assuming that the i are all independent, leading to

Pr(�jl; r) =
Y

i

exp�

�
c(li; r(i))

�

�
Pr((i)) : (5)

Modelling the (i) as independent may not be correct as it ignores the smoothness con-

straint, however it has already been shown how the uniqueness and ordering constraints

implicitly encode smoothness, so it may not be a bad model.

Next the prior distribution Pr((i)) is formulated. On the epipolar line if the ith pixel

is unmatched by the feature matchers then there is no prior knowledge about (i) and a

natural choice of prior is a uniform distribution on Pr((i)), i.e. if there are m possible

disparities Pr((i) = k) = (1 � �) 1
m
; k = 1 : : :m, and Pr((i) = ;) = �, � is the

prior probability of there being no match for a pixel due to occlusion. Note that in the

framework we shall propose any other prior could be used, for instance one that favours

smaller disparities. The discussion of this is left to the journal version of this paper for

lack of space.

If one of the feature matchers has matched the ith pixel then this gives some informa-

tion about its the disparity. Howmuch information depends upon how accurate we believe

the feature matching to be. This entails learning the error rate of the feature matcher, i.e.

the probability that any given match generated by the algorithm is, in fact, incorrect. Sup-

pose that the error rate for the corner matcher is �c and suppose that the corner matcher

indicates that the ith pixel has disparity (i) = p; then the probability that the ith pixel

is in fact correctly matched is 1 � �c. This means that Pr((i) = p) = 1 � �c and

Pr((i) 6= p) = �c the remaining probability is distributed uniformly amongst the other

disparities: Pr((i) = k) = (1� �)�c
m
; k = 1 : : :m; k 6= p, and Pr((i) = ;) = ��c

m
.

Taking account of this prior, the new cost for matching the ith pixel to jth pixel be-

comes cp(li; rj) = c(li; rj)�logPr((i) = j�i). Given this newmatching cost dynamic

programming can again be used to �nd the optimal matching path. In effect the cost for

points that have already been matched by the corner or curve matcher is drastically re-

duced; this forces the optimal matching path to be attracted towards those matches.

We call this idea pivoting as it allows the matched corners and edges to pivot the paths

estimated in adjacent epipolar lines into alignment. The matched corners and edges are

referred to as pivots (for them the cost cp is lower). Consider, for example, �gure 3a,b.

Fig 3a shows a matching path computed for a pair of corresponding epipolar lines by

standard dynamic programming techniques and also some pivots in the matching space.

In �g. 3b our pivoting strategy is employed: additional weight (lower matching cost cp)

accrues at the pivot locations and these, in turn, attract the path towards them. However,

the path is not forced to go through the pivots. This still leaves the chance for recovery

from bad edge or corner matching if the rest of the pixels on the epipolar line indicate that

a different matching is more probable.

419



pivot

optimal path
ri

g
h

t 
ep

ip
o

la
r 

lin
e

left epipolar line

pivot

optimal path

left epipolar line

ri
g

h
t 

ep
ip

o
la

r 
lin

e

a b c

Figure 3: The optimal path can be pivoted by the addition of some known corner and edge matches (pivots),

(a) Optimal path before pivoting. (b) Optimal path after pivoting. The optimal path has been attracted towards

the pivots, thanks to their lower matching costs. The optimal matching path does not necessarily go through the

pivots. (c) The reduced graph computed for speed (cf. �g. 2b).

4.1 Reducing the disparity search range

In order to speed up the path planning algorithm several heuristics could be used such as

the A* algorithm. One heuristic commonly employed is to reduce the range of disparities

that the graph is calculated on. This reduces the number of evaluations of the matching

cost function (c(li; rj)) necessary, which is the most expensive part of the algorithm. As

a heuristic the search range on disparities is reduced to �30 disparities of the nearest

matched point. This produces a graph such as that shown in �gure 3c (cf. �g. 2b).

However just as nearby corners can be used to reduce the search for matching edges

so matched edges and corners can be used to reduce the number of disparities that need to

be searched in the dense stereo algorithm. This has the effect of guiding the search path

by changing its shape with a considerable increase in speed and accuracy. This will be

shown in the example �g. 6.

5 Results

Within this section results are presented that demonstrate the palpable improvement yielded

by the pivoting approach, both in the quality and number of dense matches produced. The

results are illustrated on the pentagon stereo pair and on a stereo pair provided by Tsukuba

University with known ground truth.

Figure 4ab shows the result of our implementation of the standard Cox et al dynamic

programming method on the pentagon pair; with the same parameters used as their pa-

per [6]. Figure 4a gives the disparity map. The lighter the pixel the larger the disparity.

The image has been histogram equalized but the disparity range is about 20 pixels. Note

that there is little consistency between the epipolar lines, the white �streaks� correspond

to particularly bad matching, such that the whole line is outlying relative to its neigh-

bours. Figure 4b shows (in black) unmatched pixels which are liberally sprinkled across

the image. Note that in the original paper of Cox et al the unmatched pixels are not shown

separately.

Figure 4c gives the results of the Cox algorithm shown in �gure 4d, but this time

incorporating the effects of our pivoting strategy. Here the pivots are the matched Harris

corners shown in and matched Canny edges. Note that the disparity map is far smoother

than in the previous case with far fewer errant epipolar lines. The depth discontinuities
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are much sharper than in the previous example. Furthermore the occlusions around the

depth discontinuities are better detected (�g. 4c).

a b c d

Figure 4: Cox method using 5� 5 window for normalized cross-correlation (no pivoting) (a) Disparity Map

with some errors marked. (b) Occlusion Map. Cox method with pivoting using 5 � 5 window for normalized

cross-correlation. (c) Disparity Map. (d) Occlusion Map. Some streaking still occurs because of the imperfec-

tion of the edge matcher.

a b c d

e f g

Figure 5: (a)(b) The original Tsukuba stereo pair; left and right images. (c) The hand labeled disparity

�ground truth�. (d) Computed corner matches, (e)(f) The computed occluded pixels (in black) for the two

images. (g) The disparities computed by our improved dense stereo algorithm using a 5x5 correlation window

and pivoting.

The results for the pentagon pair could be further improved by incorporating other

prior information on shape such as the detected planes in the image. This is an easy

constraint to incorporate in the pivoting paradigm.

The next example will illustrate the effect of pivoting on a different stereo pair. Fig-

ure 5a,b shows a stereo pair taken at the University of Tsukuba. The scene is a simple

composition of a slanted rectangular textured background plane in front of a textured

background plane. Note that the apparent motion is horizontal. The computed corners

are shown in �g. 5d. The disparity ground truth has been constructed by hand (�g. 5c),

but notice that the ground truth does not take occlusions into account. However, compar-

ison with the results of our dense matching algorithm (resulting disparity map in �g. 5g)

shows a close agreement. The computed occluded pixels are shown, for the left and right

421



images, in �g. 5e and �g. 5f respectively, and the disparities in �g. 5g.

A manually selected corresponding pair of epipolar lines is shown on �g. 6a,b. This

pair is now used to illustrate the effect of pivoting in detail. Fig. 6c shows the matrix of

matching costs, the x axis is the left epipolar line and the y axis is the right epipolar line.

The x and y axes give the intensity values along the left and right epipolar lines. Each

point (x; y) shows the cost of matching the pixel in the x position on the left epipolar line

with the one in the y position on the right epipolar line. Rather than form the whole graph,

one heuristic to speed the algorithm is to set a maximumdisparity (here 90 pixels) for each

pixel, this produces a cost matrix in the form of a diagonal band. Here the matching cost

is the difference in pixel values. Notice the checkerboard effect caused by repeated struc-

tures making the matching quite dif�cult. In �g. 6d the same cost matrix is represented but

this time the pivoting strategy has been employed. Notice that the reduced search range,

guided by the corner matching, is no longer straight but it follows the movements of the

matched corners. Thanks to this guidance the width of the search range can be reduced

from 90 pixel to 30 pixel with a commensurate further improvement in the speed of the

algorithm. Fig. 6e shows the cost matrix for normalized cross-correlation and pivoting.

In �g. 6f-h the computed optimal path is shown for the same three situations: �rst for the

standard Cox algorithm (matching costs are difference of pixel intensities), second with

the pivoted version of the Cox algorithm and third with normalized cross-correlation (5x5

correlation window) and pivoting. Notice that the estimated path is quite wiggly for the

vanilla Cox (�g. 6f), the actual disparities should be constant across the background and

foreground thus the path should be straight with gradient one, without these wiggles. Piv-

oting (�g. 6g) improves the straightness of the line, however there are still some wiggles.

The best result is obtained by both pivoting and increasing the correlation windows to

5� 5 (�g. 6h).

6 Conclusion

Within this paper a new integrated methodology has been put forward. Rather than con-

sidering the corner matching, curve matching and dense stereo matching parts of the SFM

process in isolation, we propose that they should be strongly entwined. We consider the

output of each stage as a prior for the next stage, i.e. the corner and edge matching help

the dense stereo. To do this the method of pivoting is introduced which involves modi-

fying the cost function in the dynamic programming method of estimating dense stereo.

The new pivoting method helps to enforce constraints between epipolar lines and helps to

reduce ambiguity within an epipolar line for disparity estimation. Furthermore it is shown

how the the corner and edge matching can speed up the dense matching. This increase in

speed can be by as much as a factor of four. These improvements have been demonstrated

on standard test sequences.
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