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Abstract

We present in this paper an original approach for content-based video seg-
mentation using motion information. The method is generic and does not
require any knowledge about the type of the processed video. Its relies on
the analysis of the temporal evolution of the dynamic content of the video.
The motion content is characterised by a probabilistic Gibbsian modelling of
the distribution of local motion-related measurements. The designed statis-
tical framework provides a well formalised similarity measure according to
motion activity that we exploit to derive criteria for segmentation decision.
Then, the considered merging criteria are sequentially applied between every
two successive temporal units of the video to progressively form homoge-
neous segments in term of motion content. Experiments on real video docu-
ments demonstrate the ability of the proposed approach to provide a concise
and meaningful overview of a video.

Keywords: video segmentation, probabilistic motion characterisation, Gibbs models,
merging decision criteria.

1 Introduction

Due to the explosion in the amount of digital video documents produced, the actual chal-
lenge for computer vision is the development of efficient tools for their exploitation. It
implies tasks such as video indexing, browsing or search. One of the main operations at
the basis of these tasks is video segmentation. Replacing a long video by a small num-
ber of representative segments provides a synthetic description of the document which
can be exploited for domestic (preview and selection of recorded TV programs) and pro-
fessional domains (audio-visual archives consultation). One level of video segmentation
is the identification of the elementary shots in the video document [2, 3]. However, it
only reveals the technical acquisition process of the video (video shooting and editing)
and is not adapted for the objectives in sight here: segmenting the video into meaningful
segments. Since a shot is not explicitly related to the video content, it can contain more
than one event or sometimes a unique event can be spread on several shots. A solution to
rectify over-segmentation can be to merge successive elementary shots of similar content
[9], leading to more meaningful video segments. However, a non detection of a con-
tent change cannot be recovered. Our goal is to design an automatic, generic and simple
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method for content-based video segmentation into coherent temporal segments which can
offer a compact and meaningful representation of the video in terms of temporal events.
In this order, we do not consider any preliminary segmentation of the video into elemen-
tary shots. Conversely, we adopt an approach based on motion content analysis for direct
temporal video segmentation, since a variation in motion activity in an image sequence
is a strong indicator of an event change. One way to characterise the dynamic content
of temporal units of the processed video would be to consider parametric motion models
(e.g. 2D affine of quadratic motion models). However, the dynamic situations which can
be described by such models are quite limited. The study described in [8] for human
action boundaries detection in a video is based on moving object segmentation and tem-
poral discontinuities detection in the optical flow, by analysing the evolution of the most
significant coefficients of the Singular Value Decomposition of the set of successive flow
fields. In [10], in order to cluster temporal dynamic events, the latters are captured by
the local spatial and temporal intensity gradients at different temporal scales. A distance
between events is then built, based on the comparison of the empirical histograms of these
features. As [10], we propose to exploit low-level motion information straightforwardly
extracted from the images intensities. We consider a non parametrical approach and adopt
the statistical motion models introduced in [5], specified from temporal cooccurrences of
local motion measurements related to the normal velocity. These motion models handle a
wide range of dynamic contents and provide a general characterisation of these contents
in terms of motion activity. When specifying this way what the characteristics shared by
coherent temporal units are, no a priori knowledge on the processed video is required.
Besides, these motion models are expressed in a a well-funded probabilistic framework
which allow us to properly design a motion-based similarity measure between video unit-
s. We then determine homogeneous video segments in a sequential way, by analysing the
temporal variations of the motion information. To this end, we investigate two merging
decision criteria, relying on a distance between the involved statistical motion models, to
sequentially decide whether the successive temporal video units should be merged into
an homogeneous segment or not. We compare their behaviour and performances on real
video documents.

The paper is organized as follows. In section 2, we outline the statistical modelling
of motion activity within image sequences that we exploit. Section 3 is dedicated to
the definition of our merging decision criteria. The proposed sequential content-based
segmentation method is presented in Section 4. Experimental results are reported and
commented in Section 5. Concluding remarks (Section 6) end this paper.

2 Statistical motion modelling

The proposed method for content-based video segmentation relies on a probabilistic mod-
elling of the dynamic content within temporal units of the processed video. In order to
handle a wide range of dynamic situations (outdoor and indoor scenes, character scenes,
sport scenes, ...), we benefit from a general notion of motion activity and we exploit the
statistical motion models recently introduced in [5]. This framework for motion activity
modelling has already been successfully applied to motion recognition [4] and motion-
based video retrieval [5]. In this Section, we briefly outline its main characteristics. The
motion activity models are identified from the analysis of the distribution of local motion-

528



related measurements. More specifically, for a given pixel � and at a given time � , the
normal flow is straightforwardly computed from the spatio-temporal intensity gradient in
the images. Then a continuous local motion measure is computed as a weighted mean,
over a small spatial window, of the normal flow magnitude, in order to obtain a more reli-
able motion information. These measures are then quantized on a set � of discrete values.
A causal Gibbs probabilistic distribution can represent the temporal cooccurrences of the
quantized local motion measurements �������
	����	���������������	���������������� , where � is
the spatial image support and � is the length of the sequence. More precisely, given
an images sequence, we compute the associated sequence ����� �
�!�"�	���������������� of
local motion quantities maps (one motion map �
�!�"�#���������
	����$	%�&�'����������� is com-
puted from two successive images). The temporal cooccurrences distribution ()�%�"� of the
sequence � is a matrix �*()��+"	,+"-/. �0��2143$5 3$687/9;:"< defined by

()�!+0	�+ - . �"�)� =?>A@BCDE@ BF 9;GIH �!+0	����!�
	%�
���KJ H �!+ - 	�� CLK@ �M�����$	 (1)

where H �ON�	/PQ� is the Kronecker symbol (equal to 1 if NK�RP and to zero otherwise). Given a
temporal Gibbsian model S specified by its potentials TVUW�X�YT?UZ�!+0	�+ - ��2143$5 3 6 7/9;: < , the
likelihood of the sequence � under the model S is simply evaluated from the dot product
between the potentials T U and the matrix of the temporal cooccurrences ()�%�0� [5]:[ UZ�%�0�\� �]&^�_0` ab B1435 3 6 7�9;: < T?UZ�!+0	,+ - �cJ�()��+"	,+ - . �"�!de�	 (2)

with the normalisation constraint (to ensure potentials unicity)
B3*9;: ^�_f`hg T U �!+0	,+ - ��i
�j�2�

The appealing characteristic of these models is that, due to their causal aspect, the
normalisation constant

]
is explicitly known and tractable. Furthermore, it is indepen-

dant of the model S . Thus the probability (2) is exactly determined and available for any
sequence � and model S . The model estimation is achieved according to the maximum
likelihood (ML) principle. It is easy to see that the temporal model (2) is actually equiv-
alent to a product of � independent and identically distributed Markov chains defined by
the transition matrix kl�m� n o2�K�!T U �!+0	�+ - �p���q1435 3 6 7�9;: < . Thus, the ML estimate is deter-
mined by the empirical estimate of k , and given an observed sequence � , the estimated
potentials TsrU are deduced from the cooccurrences distribution (\�O�"� as follows:

T&rU ��+"	,+ - ���st8uv� ()�!+0	,+ - . �"�B3$6 6O9;: (\��+ - - 	,+ - . �"� �� (3)

Therefore, the use of these statistical motion activity models appears simple and effi-
cient. The computation of the temporal cooccurrences (\�O�"� can be realised in a parallel
scheme. Once the temporal cooccurrences distribution is available, the model estimation
is straightforward and the evaluation of the likelihood (2) requires only the computation
of dot products between the model potentials and the cooccurrence coefficients, which are
tasks of low computational time.
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3 Decision criteria for merging temporal video units

In this Section, we consider the issue of stating whether or not two temporal video units
can be considered as homogeneous in terms of motion activity, in order to decide if they
could reasonably be merged in an unique representative segment. To achieve this goal we
exploit the statistical framework associated to the designed motion models. We use the
Kullback-Leibler divergence [1] to build the dynamic-content similarity measure, and we
propose criteria for merging decision based on this similarity measure.

Let us consider two sequences of motion quantities maps � and � and the correspond-
ing estimated motion models S�� and S�� . The Kullback-Leibler divergence between
models S � and S � is defined as:� � �%S��q.4. S��;��� ���
	�� � [ U� ������� [ U�� ��������� [ U� ������ (4)

In practice, this quantity is not available and an approximation is necessary. Each transi-
tion from ���������2	%�
� to ������	%��� beeing a realisation of the Markov chain related to

[ U  ,
we use the following Monte-Carlo approximation of expression (4) (see [5] for more de-
tails): � � �%S � .8. S � ��� �
	���� [ U  �O�"��� [ U � �O�"�����j�/T?U  ��T?U � � � ()�%�0�$	 (5)

since the normalisation constant
]

is model independent. As a result, the Kullback-
Leibler divergence has an easy interpretation: it evaluates the information loss when sub-
stituting model S � for model S � to describe � .

Given two successive motion map sequences, �"! and �#! LE@ , a first criterion for the
merging decision is thus the Kullback-Leibler divergence � � �%S �%$ .4. S �%$'&)( � between
models S �%$ and S �%$'&)( , that we will denote � � �%�#!p	p�*! LE@ � in the following. As men-
tioned above, this criterion expresses how well the model S ��$ estimated on the current
sequence can fit the next coming sequence. However, when considering the issue of
merging the two sequences �"! and �#! LE@ based on their respective dynamic contents, a
symmetrical criterion would seem more natural. This could be the symmetrical version
of � � �O�*!,	��#! LE@ � , however, it is important to notice that actually three statistical motion
models are involved in the merging process: S+� $ , S�� $,&-( and the model S�� $/. � $,&-( that
would describe the new sequence � !10 � ! LE@ resulting from the merging of � ! and � ! LE@ .
The decision of merging should be taken if the model S+� $2. � $'&-( can fit well both � ! and� ! LE@ . We thus propose the following criterion, combining the three models and likely to
give a more meaningful representation of the considered merging problem:

354 �%�*!	��#! LE@ �)� �6 g � � ��S �%$ . �%$,&-( .4. S �%$ �87 � � �%S �%$ . �%$'&)( .4. S ��$'&-( �/i/� (6)

This criterion is now symmetrical. It evaluates the information loss when deciding to
merge � ! and � ! LE@ and to represent them by a single motion model. In term of compu-
tational amount, the use of

3 4 �%� ! 	�� ! LE@ � when comparing each two successive temporal
units of a video involves the computation of S9� $/. � $'&-( at each comparison, while the
use of � � �O�#!p	p�*! LE@ � necessitates this evaluation only after a merging decision, for model
updating. However, the model S �%$ . �%$'&)( can be easily (and fastly) estimated by adding
the (purely) temporal cooccurrences matrix (\�O�"! � and ()�%�*! LE@ � to obtain (\�O�#! 0 �*! LK@ � ,
from which the model potentials are derived as in expression (3). In practice, the cost
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corresponding to the two criteria are quite similar. In the next section, we describe more
precisely our method for content-based video segmentation.

4 Temporal video segmentation based on motion
information

Our method for motion-based video segmentation relies on the analysis of the dynamic
content of successive temporal units of the considered video document, through the sta-
tistical motion models associated to each of these units. The method provides a temporal
video segmentation into homogeneous segments according to motion content as well as
a characterisation of these segments by an associated statistical motion model. Given a
video, we first need to define a sequence of temporal units of the video, ��� ! � ! 9�� @ 5 ��� , which
is the input of our temporal segmentation method. A temporal unit can be defined by its
first and its last image. Temporal units of two successive motion maps, computed from
three successive images, is the minimal length

�
we can consider, since the statistical

motion activity models are specified from temporal cooccurrences of the motion-related
measurements. In the following, we will denote �"! the sequence of motion maps and S�!
the motion model estimated from the temporal unit � ! .

In a previous work [6], a hierarchical batch approach had been investigated, using the
symmetrical version of � � �O�"!p	p�*! LE@ � , but we prefer here a sequential approach, which is
much less time consuming and whose implementation is less demanding in terms of mem-
ory space. Each step of our algorithm consists in deciding if the homogeneous segment
currently built should encompass the next temporal unit. Let us denote ��� and S	��


4
�

respectively the sequence of motion quantities maps and the motion model associated to
this homogeneous segment. At each iteration the sequence of motion quantities maps � !
and the motion model S�! associated to the next temporal unit are computed. Then, the
similarity between the two involved sequences of motion maps, � � and �*! , is evaluated
through the computation of the considered merging criterion

3
(note that if this criterion

is
354 ��� � 	p�*! � given by expression (6), it is also necessary to estimate the motion modelS �� . �%$ associated to the merged segment � � 0 �#! ). If the value of

3
is lower than a giv-

en threshold, then �"! is incorporated to the current homogeneous segment and the motion
model S	��


4
� is updated. Otherwise, the current homogeneous segment � � is ended at�*! >A@ and a new homogeneous segment � � LE@ is initialised, corresponding at that point to

the single unit � ! . Then, the process is iterated with unit � ! LE@ (see Figure 1). The algorith-
m supplies as output a sequence of homogeneous temporal video segments ����� � � 9�� @ 5 ���
and the sequence of the associated motion models � S���


4
� � � 9�� @ 5 ��� . Each model S	��


4
�

corresponds to the maximum likelihood estimator for the sequence � � .
The method performances are studied in the following section.

5 Experiment results

We have carried out experiments on two different video documents. The Athletics video is
part of a TV sport program corresponding to an athletics meeting and the Avengers video
is a film strip of the TV serie “Avengers”. The examples processed contain respectively
1416 and 3496 frames. Representative images of the two video sequences are displayed
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Initialisation: compute � @ and S @
� @�� � @S ��


4@ � S @
Body: for ��� 6

to ���sk
1. compute � ! and S !
2. compute

3 ��� ��	�� ! �
(and thus if necessary S �  . � $ )
3. if

3 � � � 	��*! ����� ���Yn	��� 	 � � then merge :
compute S �� . �%$ if not already computed in step 2,
update S ��


4
� � S �� . �%$ and � � � � � 0 �*!

else create new segment:
� � LE@ � �*! and S ��


4
� LE@ � S !

Figure 1: Content-based temporal segmentation algorithm using statistical motion mod-
els.
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Figure 2: Avengers video: computed values of expressions
3 4 �O� ! 	p� ! LE@ � (top row) and� � �O�*!,	��#! LE@ � (bottom row), between every two successive temporal units �)! and �#! LE@ of

the video, and motion changes ground truth (top bar in each row).

on Figures 3-a and 4-a.
Before evaluating the performance of our temporal segmentation method, we first

compare the ability of the two merging criteria � � �O� ! 	�� ! LK@ � and
3 4 �O� ! 	�� ! LE@ � to en-

hance motion-content dissimilarity. To that end, we have computed these criteria between
every successive temporal units �"! and �*! LE@ of a video (without any merging yet at this
stage). Let us stress that this does not evaluate the segmentation process itself since the
latter considers the current homogeneous segment � � and the next temporal unit �#! LE@ . We
have plotted on Figure 2 the “instantaneous” values of the two criteria for the Avengers
video (we have set

� � 6
for these experiments). We have compared the obtained val-

ues to a manually-made ground truth of motion-content changes in the processed video.
A peak in the criteria values is almost always observed when such a change occurs. It
seems that the criterion � � �O�"!p	p�*! LE@ � is more sensible to these changes than the criterion3 4 �%� ! 	�� ! LE@ � and consequently that incorporating the motion model of the merged seg-
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ment �*! 0 �*! LE@ smoothes the response of the criterion. Qualitatively, it means that even
if a unit � ! LE@ can be poorly represented by the previous motion model S ! , � ! and � ! LE@
can still be relatively well represented by the motion model corresponding to their fusion.
Most of the motion-content changes in the Avengers video correspond to shot changes
and the others (as the ones designated by the arrows on Figure 2) correspond to a dynam-
ic evolution within the same shot. Obviously recovering the latters is a more difficult task
because the change is less abrupt. The direct effect is a lower peak value of the criterion
for this sort of break (see Figure 2).

When using the two criteria to perform the temporal segmentation of a given video,
the difference in the response intensity tends to disappear. Indeed, we are now working
with homogeneous segments � � growing after each merging decision. As a result, the
possible deviation brought by a new unit has less weight and the second term in expres-
sion (6), � � ��S �� .8. S �� . �%$ � , decreases to zero as the size of � � increases. Thus, the
two criteria � � ��� � 	��*!�� and

354 � � � 	��#!/� tend to give the same answer. As an illustration,
Figures 3-b and 4-b display the results obtained with our temporal segmentation algo-
rithm according to the decision criterion used and for the two video examples (due to
page limitation we present the results for a excerpt of the complete videos). For com-
parison convenience, for both criteria, the threshold was choosen such that the number
of resulting homogeneous segments was similar to the one in the manually-made ground
truth. (Note that in practice, the strategy would be to apply the segmentation algorithm
for a given threshold.) The obtained segmentations demonstrate the efficiency of the pro-
posed method since all the key events have been well captured. On the Avengers example,
all the motion changes are recovered and especially the dynamic changes within a shot
(designed by the arrows). Nevertheless, motion-based segmentation remains subjective
since it may exist several levels in motion discrimination depending on the objective in
sight. As an illustration, the Athletics video is composed of five main successive activities
(see Figure 4-a): a long jump event, a TV program advertisement, a pole vault, a high
jump and again a pole vault. Both segmentation methods permit to isolate these differ-
ent events. In addition, each event contains several motion changes (in particular during
the TV program advertisement which includes many special effects) and we can observe
that most of them are recovered with our segmentation method ( Figure 4-b). In the two
examples, a sequence of key images, one for each homogeneous segment detected by the
motion-based segmentation can provide a concise and significant overview of the content
of the processed video sequences.

The segmentation method does not allow to explicitly select the total number � of
homogeneous segments. This number depends on the threshold value adopted in the
merging decision. We have studied the sensibility of our motion-based segmentation
method to the threshold setting. Figure 5 illustrates, for the Avengers video, the evolution
of the number of resulting homogeneous segments when the threshold value increases,
and for the two choices of decision criterion. We can observe that the two criteria present
a similar evolution of the number of segments. The criterion � � ��� � 	p�*! LE@ � seems to
lead to more segments for a given threshold. This is due to the fact that when a motion
change occurs within a temporal unit � ! , a segment composed of this single unit tends
to be formed, and this happens more often when using � � � � ��	p� ! LE@ � . Figure 5 shows
that after a first phase of fast decrease of � a certain range of threshold values can be
considered without affecting the segmentation results.
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(a)
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KL(y,z)

Cm(y,z)

GT 

(b)

Figure 3: Excerpt of the Avengers video: (a), representative images of the video documen-
t, (b) top to bottom, manually-made ground truth, segmentation obtained with criterion� � � � � 	��*! LE@ � , segmentation obtained with criterion

3 4 � � � 	��#! LE@ � .
6 Concluding remarks

We have presented an original and simple method for automatic content-based video seg-
mentation. This method does not require knowledge about the video genre or a prior
segmentation into shots. It relies on the analysis of low-level motion information through
statistical motion activity models which can capture and discriminate a large variety of dy-
namic situations. The temporal segmentation of the video document into homogeneous
segments is realised by means of a merging decision criterion applied sequentially along
the video. The experiments are encouraging for a low level method. They confirm that
considering motion activity models is relevant to analyse video content. It highlights that
the proposed sequential method for content-based video segmentation is able to properly
discriminate different categories of motion activities, provided that the introduced motion
models permit to capture in a flexible way a large range of dynamic situations and that
the segmentation criterion is statistically well formalized. The resulting segments are co-
herent with respect to dynamic content and furthermore provide a meaningful overview
of the video.

We have investigated two merging decision criteria based on the Kullback-Leibler
divergence. The first one, � � �%��	��Q� , only compares the motion models associated with
the two concerned video units, while the second one,

3 4 �O�
	��f� , takes also into account
the motion model estimated from the potential union of the two video units. We have
observed that when used in a sequential segmentation scheme they actually behave sim-
ilarly. However, theoretically, the criterion

3 4 �O�
	��Q� should express a better formulation
of the merging problem since it takes into account the merged model. The observed “s-
moothing” effect of this criterion is probably due to the motion model used, offering a
large number of degrees of freedom (i.e. a high number of parameters corresponding to
the Gibbs model potentials). In this case, the merged model can fit well the data and can
thus embedd each element of the fusion.

Experiments are currently carried out on a larger video base involving several hours
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Figure 4: Excerpt of the Athletics video: (a), representative images of the video documen-
t, (b) top to bottom, manually-made ground truth, segmentation obtained with criterion� � � � � 	��*! LE@ � , segmentation obtained with criterion

3 4 � � � 	��#! LE@ �
of video. In addition, the proposed segmentation method could be extended in two dif-
ferent ways, which are currently investigated. First, it would be interesting to control the
relation between the total number of homogeneous segments and the merging threshold
value. Second, the segmentation method relies on dynamic content analysis. Obviously,
combining motion information with other informations such as color or audio features
would place the segmentation at a more semantic level, as investigated in [7]. The advan-
tage of the proposed statistical framework is that the integration of different information
sources would be straigthforward. Our motion-based segmentation method, enriched with
complementary video features, can be seen as a first step towards video summarisation.
The video summary could be stated as the selection of pertinent segments among the
homogeneous segments supplied by the content-based video segmentation stage. Our
motion-based video segmentation algorithm can also be adapted to other tasks such as
video indexing, temporal motion decomposition (e.g., analysis of sport gesture) or detec-
tion of unusual events (e.g., video surveillance).
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tion de la Recherche, for providing the videos.

References

[1] M. Basseville. Distance measures for signal processing and pattern recognition.
Signal Processing, 18(4):349–369, 1989.

[2] J.S. Boreczky and L.A. Rowe. Comparison of video shot boundary detection tech-
niques. In SPIE Conference on Storage and Retrieval for Image and Video Databas-

535



0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

350

400

450

500

threshold

N
b 

of
 h

om
og

en
eo

us
 s

eg
m

en
ts

Cm(y,z)
KL(y,z)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
10

20

30

40

50

60

70

80

threshold

N
b 

of
 h

om
og

en
eo

us
 s

eg
m

en
ts

Cm(y,z)
KL(y,z)

(a) (b)

Figure 5: Avengers video: number of homogeneous segments supplied by the motion-
based temporal segmentation versus decision threshold, depending on the criterion,354 ��� � 	��*! LE@ � (solid line) and � � ��� � 	��*! LE@ � (plus line), (a) threshold varying between
0.1 and 1.2, (b) zoom of Figure a.

es IV, volume SPIE 2670, pages 170–179, San Jose, January 1996.

[3] P. Bouthemy, M. Gelgon, and F. Ganansia. A unified approach for shot change
detection and camera motion characterization. IEEE Transactions on Circuits and
Systems for Video Technology, 9(7):1030–1044, 1999.

[4] R. Fablet and P. Bouthemy. Non parametric motion recognition using temporal
multiscale Gibbs models. In IEEE International Conference on Computer Vision
and Pattern Recognition, CVPR’01, Kauai, Hawaii, December 2001.
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