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Abstract

This paper demonstrates how the EM algorithm can be used for learn-
ing and matching mixtures of point distribution models. We make two
contributions. First, we show how the shape-classes can be learned
in an unsupervised manner by updating the deformation matrix it-
eratively. Second, we show how recognition by alignment can be re-
alised by fitting a mixture of linear shape deformations. We evaluate
the method on the problem of learning class-structure and recognising
Arabic characters.

1 Introduction

Deformable models have proved to be both powerful and effective tools in the
analysis of objects which present variable shape and appearance. There are many
examples in the literature. These include the point distribution model of Cootes
and Taylor [1], Sclaroff and Pentland’s [2] finite element method, and, Duta and
Jain’s [3] elastic templates. There are two issues to be considered when designing a
deformable model. The first of these is how to represent the modes of variation of
the object under study. The second is how to train the deformable model. One of
the most popular approaches is to allow the object to undergo linear deformation
using in the directions of the modal variations of shape. These modes of variation
can be found by either performing principal components [4], or independent com-
ponents analysis on the covariance matrix for a set of training examples [5], or by
computing the modes of elastic vibration [6].

Our aim is to explore how point-distribution models can be trained and fit-
ted to data when multiple shape classes or modes of shape-variation are present.
The former case arises when unsupervised learning of multiple object models is
attempted. The latter problem occurs when shape variations can not be captured
by a single linear model. Here we show how both learning and model fitting can
be effected using the apparatus of the EM algorithm.

In the learning phase, we use the EM algorithm to extract a mixture of point-
distribution models from the set of training data. Here each shape-class is rep-
resented using a Gaussian distribution with its own mean-shape and covariance
matrix. From the estimated parameters of the Gaussian mixtures, the point-
distribution model can be constructed off-line by performing PCA on the class
covariance matrices. In the model fitting phase, we fit a mixture of PDM’s us-
ing an architecture reminiscent of the hjpgurrhical mixture of experts algorithm of
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Jordan and Jacobs [7]. Here each of the class-dependant PDM’s identified in the
learning step is treated as an expert. The recognition architecture is as follows.
Each point in the test pattern may associated to each of the landmark points in
each of the class-dependant PDM’s with an a posteriori probability. In addition,
we maintain a set of alignment parameters between the test pattern and each of
the PDM’s. We experiment with the method on Arabic characters. Here we use
the new methodology to learn character classes and perform recognition by align-
ment. This is a challenging problem since the data used exhibits a high degree of
variability.

The resulting framework clearly has a great deal in common with work reported
elsewhere in the literature. For instance Jojic and Frey [8] have used the EM
algorithm to fit mixture models to the appearance manifolds for faces. Bishop
and Winn [9] have used a mixture of principal components analysers to learn and
synthesise variations in facial appearance. Vasconcelos and Lippman [10] have
used the EM algorithm to learn queries for content-based image retrieval. Finally,
several authors have used the EM algorithm to track multiple moving objects
[11][12].

2 Point Distribution Models

The point distribution model of Cootes and Taylor commences from a set training
patterns. Each training pattern is a configuration of labelled point co-ordinates
or landmarks. The landmark patterns are collected as the the object in question
undergoes representative changes in shape. To be more formal, each landmark
pattern consists of L labelled points whose co-ordinates are represented by the
set of position co-ordinates {X7, X, ..., X;} = {(z1,¥1), .. (zr,yr)}. Suppose
that there are 7' landmark patterns. The #** training pattern is represented using
the long-vector of landmark co-ordinates Xy = (z1,y1,%2,Y2,"--,25,y5)” , where
the subscripts of the co-ordinates are the landmark labels. For each training pat-
tern the labelled landmarks are identically ordered. The mean landmark pattern
is represented by the average long-vector of co-ordinates ¥ = %Zthl X;. The
covariance matrix for the landmark positions is

T
z= %;(xt —Y)(X, - V)T (1)

The eigenmodes of the landmark covariance matrix are used to construct the point-
distribution model. First, the eigenvalues A of the landmark covariance matrix are
found by solving the eigenvalue equation | —AI| = 0 where I is the 2L x 2L identity
matrix. The unit eigen-vector ¢; corresponding to the eigenvalue A; is found by
solving the eigenvector equation £¢; = A;¢;. According to Cootes and Taylor [1],
the landmark points are allowed to undergo displacements relative to the mean-
shape in directions defined by the eigenvectors of the covariance matrix ¥. To
compute the set of possible displacement directions, the K most significant eigen-
vectors are ordered according to the magnitudes of their corresponding eigenvalues
to form the matrix of column-vectors ® = (¢1|¢2|...|¢k), where A1, A, ....., Ak is
the order of the magnitudes of the eigenvectors. The landmark points are allowed
to move in a direction which is a linear combination of the eigenvectors. The up-
dated landmark positions are given by X =Y + &+, where ~ is a vector of modal
co-efficients. This vector represents the Affegegaarameters of the global shape-model.
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3 Learning Mixtures of PDM’s

In Cootes and Taylor’s method [?], learning involves extracting a single covariance
matrix from the sets of landmark points. Hence, the method can only reproduce
variations in shape which can be represented as linear deformations of the point
positions. To reproduce more complex variations in shape either a non-linear
deformation or a series of local piecewise linear deformations must be employed.

In this paper we adopt an approach based on mixtures of point-distributions.
Our reasons for adopting this approach are twofold. First, we would like to be able
to model more complex deformations by using multiple modes of shape deforma-
tion. The need to do this may arise in a number of situations. The first of these
is when the set of training patterns contains examples from different classes of
shape. In other words, we are confronted with an unsupervised learning problem
and need to estimate both the mean shape and the modes of variation for each
class of object. The second situation is where the shape variations in the training
data can not be captured by a single covariance matrix, and a mixture is required.

Our approach is based on fitting a Gaussian mixture model to the set of training
examples. We commence by assuming that the individual examples in the training
set are conditionally independent of one-another. We further assume that the
training data can be represented by a set of shape-classes 2. Each shape-class
w has its own mean point-pattern Y,, and covariance matrix ¥,. With these
ingredients, the likelihood function for the set of training patterns is

T
p(Xit=1,...T) =[] Y p(XulYs, %) (2)

t=1 weN

where p(X|Y,,, £,,) is the probability distribution for drawing the training pattern
X; from the shape class w.

According to the EM algorithm, we can maximise the likelihood function above,
by adopting a two-step iterative process. The process revolves around the expected
log-likelihood function

T
QLCTIIC™) =33 " P(t € w] Xy, VW, £) Inp(X, [V D, 5(H1) - (3)
t=1 weQ

where YUS") and ESJ") are the estimates of the mean pattern-vector and the
covariance matrix for class w at iteration n of the algorithm. The quantity

P(t € w|X;, Yy v E(")) is the a posteriori probability that the training pattern
X; belongs to the class w at iteration n of the algorithm. The probability density
for the pattern-vectors associated with the shape-class w, specified by the esti-
mates of the mean and covariance at iteration n + 1 is p(Xt|YuE"+1), Es,”+1)). In
the M, or maximisation, step of the algorithm the aim is to find revised estimates
of the mean pattern-vector and covariance matrix which maximise the expected
log-likelihood function. The update equations depend on the adopted model for
the class-conditional probability distributions for the pattern-vectors.

In the E, or expectation, step the a posteriori class membership probabilities
are updated. This is done by applying the Bayes formula to the class-conditional
density. At iteration n + 1, the revised estimate is
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where
1 X
rD = 23 Pt e w| X, YW, E0) (5)

t=1

Rather than estimating the point-distribution model off-line using the estimated
covariance matrix, our approach involves refining the eigenvector matrix iteratively

using the EM algorithm. To do this we first compute the mean pattern vector

T
Y =3 P(t € wlXe, YV, 507X, (6)

t=1
Keeping the class means fixed, for each pattern vector X; and each point

distribution model, we find the vectors of modal co-efficients 7,5(3 )
the squared distance, i.e. which satisfies the condition

e = argmin(X, = ¥, = 2009)7 (X, - ¥, - 8{) (7)

which minimises

where <I>£,") is the current estimate of the deformation matrix. The vector which
satisfies this condition is

-1
A = [(¢£"))T<P£"’] (@&"M@&"))T) (X, — ¥ () ®)

We use the residual errors between the fitted point distribution models to each
class to define a probability distribution for the training patterns. We assume that
the residuals follow the Gaussian distribution

p(thyugn-f-l)’ E‘(Un+1)) — ; X exp [_%(X [Y(n) + @(n),ytw ])
(2m)Py/ |25V

(Xe — [V + WD (9)

We use this distribution to update the estimates of the deformation matrices @&")
in the M-step of the EM algorithm. However, this is not tractable in closed
form. Hence, we adopt a gradient ascent approach. Accordingly, we compute the
derivative of the expected log-likelihood function with respect to the deformation

matrices. Using the rules of matrix differentiation, the required derivative is
(n+1)|0(n) £l
BQL((; ) _ S Pt € wlx, VI, 50) x [(X: - X))
o t=1

)Xo = YT 42809 (i) | (10)

The deformation matrices are updated as follows
8QL(C("+1)|C("))

(I,‘(dn-i-l) - (I)L(dn) +17
aq)(")

00
where 7 is a stepsize, which is controlleg heuristically.
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4 Recognition by Alignment

Once the set of shape-classes and their associated point-distribution models has
been learnt, then they can be used for the purposes of alignment or classification.
The simplest recognition strategy would be to align each point-distribution model
in turn and compute the associated residuals. This may be done by finding the
least-squares estimate of the modal co-efficient vector for each class in turn. The
test pattern may then be assigned to the class of whose vector gives the small-
est alignment error. However, this simple alignment and recognition strategy can
be criticised on a number of grounds. First, it is difficult to apply if the train-
ing patterns and the test pattern contain different numbers of landmark points.
Second, certain shapes may actually represent genuine mixtures of the patterns
encountered in training.

To overcome these two problems, in this Section we detail how the mixture of
PDM’s can be fitted to data using a variant of the hierarchical mixture of experts
algorithm of Jordan and Jacobs [7]. We view the mixture of point-distribution
models learnt in the training phase as a set of experts which can preside over the
interpretation of test patterns. Basic to our philosophy of exploiting the HME al-
gorithm is the idea that every data-point can in principle associate to each of the
landmark points in each of stored class shape-models with some a posteriori prob-
ability. This modelling ingredient is naturally incorporated into the fitting process
by developing a mixture model over the space of potential matching assignments.

The approach we adopt is as follows. Each point in the test pattern is allowed to
associate with each of the landmark points in the mean shapes for each class. The
degree of association is measured using an a posteriori correspondence probability.
This probability is computed by using the EM algorithm to align the test-pattern
to each mean-shape in turn. This alignment process is effected using the point-
distribution model to each class in turn. The resulting point alignment errors are
used to compute correspondence probabilities under the assumption of Gaussian
errors. Once the probabilities of individual correspondences between points in the
test pattern and each landmark point in each mean shape are to hand, then the
probability of match to each shape-class may be computed.

4.1 Landmark displacements
Suppose that the test-pattern is represented by the vector W = (i, W, ....., Wp)

which is constructed by concatenating D individual co-ordinate vectors @y ,.....W0p.
However, here we assume that the labels associated with the co-ordinate vectors
is unreliable, i.e. we can not use the order of the components of the test-pattern
to establish correspondences. We hence wish to align the point distribution model
for each class in turn to the unlabelled set of D point position vectors W =
{Wy,Wa, .....,Wp}. The size of this point set may be different to the number of
landmark points L used in the training. The free parameters that must be adjusted
to align the landmark points with W are the vectors modal co-efficients 7, for each
component of the shape-mixture learnt in training.

The matrix formulation of the point-distribution model adopted by Cootes
and Taylor allows the global shape-deformation to be computed. However, in
order to develop our correspondence method we will be interested in individual
point displacements. We will focus our attention on the displacement vector for the
landmark point indexed j produced by tlsleoclova.riance matrix of the shape-mixture
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indexed w. The two components of displacement are the elements eigenvectors
indexed 25 — 1 and 2j. For each landmark point the set of displacement vectors
associated with the individual eigenmodes are concatenated to form a displacement
matrix. For the j** landmark of the mixing component indexed w the displacement
matrix is
A¥ — <<I>w(2j -1,1) 9,(2j-1,2) ... ®,(2j— I,K)) (12)
J ®,(24,1) $,(24,2) ®,(24,K)

The point-distribution model allows the landmark points to be displaced by a
vector amount which is equal to a linear superposition of the displacement-vectors
associated with the individual eigenmodes. To this end let 7, represent a vector
of modal superposition co-efficients for the different eigenmodes. With the modal
superposition co-efficients to hand, the position of the landmark j is displaced by
an amount A%~y from the mean-position g
To develop a useful alignment algorithm we require a model for the measure-
ment process. Here we assume that the observed position vectors, i.e. w; are
derived from the model points through a Gaussian error process. According to
our Gaussian model of 1the ali nm?nt errors,
(T[T} s B W) = 5— eXPT—F(@ — 7 = AYy) T (@ - Y - A;‘-’%)] (13)
where ¢~ is the variance of the point-position errors which for simplicity are as-
sumed to be isotropic.

4.2 Mixture Model for Alignment

We make a second application of the EM algorithm, with the aim of estimating
the matrix of alignment parameters T'(™ = (’y{")|'y§”)|....|'yl(g‘)) is the matrix of
vectors of modal alignment parameters for each of the point-distribution models
residing in memory. Under the assumption that the measurements of the individ-
ual points in the test-patterns are conditionally independent of one-another, the

matrix maximises the expected log-likelihood function

D L
Qa@HITM) = NN "N " P(5 [, vV) In p(a |77, /) (14)

we i=1 j=1

2

With the displacement model developed in the previous section, maximisation of
the expected log-likelihood function @) 4 reduces to minimising the weighted square
error measure

= 35 G — 77 — AP (@ - — AP (19

i=1 j=1

where we have used the shorthan(d notation (; (") to denote the a posteriori corre-

spondence probability P(§ @i, v ) e

4.3 Maximisation
Our aim is to recover the vector of modal co-efficients which minimize this weighted

squared error. To do this we solve the system of saddle-point equations which
results by setting W = 0. After applying the rules of matrix differentiation

and simplifying the resultlng saddle- Bomt equations, the solutlon vector is

£n+1) — (Z AwTAw 1{2 Z (n) —oTAw Zy-;uTAcJu (16)
j=1

j=1 =1 502
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4.4 Expectation

In the expectation step of the algorithm, we use the estimated alignment parame-
ters to update the a posteriori matching probabilities. The a posteriori probabil-
ities P (i |wz,7£, )) represent the probability of match between the point indexed
1 and the landmark indexed j from the shape-mixture indexed w. In other words,
they represent model-datum affinities. Using the Bayes rule, we re-write the a pos-
teriori matching probabilities in terms of the conditional measurement densities

(n) ( ) ( )
w L P\W;
PG|, A(™) = 0GP TF o)

Zw o Z] . B (n) ( ) (n))

j w'p(wiiyJ' a’Yw’

The landmark mixing proportions for each model in turn are computed by av-
eraging the a posteriori probabilities over the set of points in the pattern being

(17)

. (n+1) _
matched, ie. o,

=5 ZP 5 7 |wi,7™). The a posteriori probabilities for

=1
the components of the shape mixture are found by summing the relevant set of

L
_ Z (n+1)
] w
i=1
model probabilities sum to unity over the complete set of models. The probability
assignment scheme allows for both model overlap and the assessment of ambiguous
hypotheses. Above we use the shorthand notation a( " to represent the mixing

proportion for the landmark po1nt ] from the model w The overall proportion

ﬂgjn+l)

point mixing proportions, i.e. . In this way the a posteriori

of the model w at iteration n is ﬂw . These quantities provide a natural mecha-
nism for assessing the significance of the individual landmark points within each
mixing component in explaining the current data-likelihood. For instance if a( n)
approaches zero, then this indicates that there is no landmark point in the data
that matches the landmark point j in the model w
Table 1. Error measure comparison
Measure Single PDM’s
Least Square Error 578076.452704
Mahalanobis Distance 11438.000

Mixture PDM’s
566767.975989
3260.010

Table 2. Recognition Rate for shape-classes 1-7

Single PDM Mixture of PDM’s
Model No. Samples | Correct | Wrong | Correct | Wrong
Shape-Class 1 100 90 10 97 3
Shape-Class 2 100 96 4 99 1
Shape-Class 3 100 96 4 100 0
Shape-Class 4 100 90 10 98 2
Shape-Class 5 100 93 7 98 2
Shape-Class 6 100 97 3 97 3
Shape-Class 7 100 82 18 95 5
Recognition Rate 700 92.0% 8.0% 97.7% 2.3%

5 Experiments

We have evaluated our learning and recognition method on sets of Arabic char-
acters. Here the landmarks used to constpyget the point-distribution models have
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Figure 1: Convergence rate for mixture of PDM’s shape-classes

been positioned by distributing points uniformly along the length of the charac-
ters. In practice we use 20 landmarks per character in 2D space. In total there
are 7 different classes of character. We use 100 samples of each character for the
purposes of training and 100 sample of each character class for recognition.

5.1 Learning

In Table 1 we list the mean-squared error and the Mahalanobis distance obtained
when the characters in a single class are represented by a single PDM and by a
mixture of PDM’s. Here there are 7 examples in the training-set and the mixture
of PDM’s contains 100 components. The mixture of PDM’s results in considerably
lower error than the single PDM. In Figure 1 we show the convergence rate as a
function of iteration number for three variants of the mixture model. The plot
again shows the average a posteriori class probabilities for the different characters.
The different curves are for the different components of the shape-mixture model.
The main conclusion that can be drawn from the plot is that the method converges
rapidly and uniformly. In Figure 2, we show the mean-shapes learnt in training.
In columns (a,d) of the figure, we show the ground-truth mean shapes. In columns
(c,f), we shows the learnt shapes. The two are in good agreement.

BEEaE==

Figure 2: columns (a),(d) Actual mean shapes; ( ) EM Initializations; (c),(
Final Mean Shapes
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5.2 Recognition

We now turn our attention to the results obtained when the shape-mixture is used
for the purposes of recognition by alignment. In Figure 3 we illustrate the fitting
of a mixture of PDM’s to a character retained from the training-set. The different
images in the sequence show the fitted PDM’s as a function of iteration number.
The shape shown is the one with the largest a posteriori probability. Figure 3
shows the result obtained when training is performed using a mixture of PDM’s.
In Figure 4 we show the alignments of the subdominant shape-components of the
mixture. These are all very poor and fail to account for the data. In Figure
5 we show the a posteriori probabilities g, for each of the mixing components
on convergence. The different curves are for different shape-classes. A single
dominant shape hypothesis emerges after a few iterations. The probabilities for
the remaining shape-classes fall towards zero. Note that initially the different
classes are equiprobable, i.e. we have not biased the initial probabilities towards
a particular shape-class.

Finally, we measure the recognition rates achievable using our alignment method.
Here we count the number of times the maximum a posteriori probability shape,
i.e. the one for which w = argmax f,,, corresponds to the hand-labelled class of
the character. This study is performed using 700 hand-labelled characters. Ta-
ble 2 lists the recognition rates obtained in our experiments. The table lists the
numbers of characters recognised correctly and incorrectly for each of the shape-
classes; the results a given for both single PDM’s and a mixture of PDM’s. The
main conclusions to be drawn from the table are as follows. First, the mixture of
PDM’s gives a better recognition rate than using separately trained single PDM’s
for each class. Hence, recognition can be improved using a more complex model
of the shape-space.

sl ¢ ¢ ¢

Figure 3: Model alignment to data using mixtures PDM’s at iteration 1, 2, 3, 5, 7

AhdP A AFdEd

Figure 4: Sub dominant model alignment to data using mixture of PDM’s

6 Conclusion

In this paper, we have shown how mixtures of point-distribution models can be
learnt and then subsequently used for the purposes of recognition by alignment. In
the training phase, we show how to use the method to learn the class-structure of
complex and varied sets of shapes. In the recognition phase, we show how a variant
of the hierarchical mixture of experts architecture can be used to perform detailed
model alignment. We present results 0115 s(%s of A
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Figure 5: Model fitting with a mixture of PDM’s.

that the mixture of PDM’s gives excellent performance. Our future plans revolve
around developing a hierarchical approach to the shape learning and recognition
problem. Here we aim to decompose shapes into strokes and to learn both the
variations in stroke shape, and the variation in stroke arrangement.
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