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Abstract

In the past few years we have witnessed the migration of cheap imaging devices into
portable and mobile computing appliances such as PDAs and mobile phones. As
these devices become ever more powerful in terms of processor speed and memory,
new exciting applications and uses are being developed. A particularly useful one is
the casual capture of text images for faxing, note taking, OCR, etcetera. This paper
describes the image processing pipeline used to enhance images of text captured by
a hand-held low-resolution camera, and a fast text extraction method. The main
advantages of the approach are its inherent lightweight structure, speed and relative
robustness under poor lighting and focus conditions. The computational efficiency
(and a careful implementation) of the approach has allowed its deployment in an
interactive-time text capture and foreign-text translation demo on a PDA with a
VGA camera attachment.

1 Introduction

In the past few years cheap imaging devices are making their way into portable and
mobile computing appliances such PDAs and mobile phones, which are in turn
becoming more and more powerful in terms of processor speed and memory.
Amongst the many exciting new uses that these devices stimulate are interesting
applications that live in the intersection between imaging and mobile computing
[2][3][7]. One of those is the casual capture of text images for, e.g., faxing, note
taking, OCR, etcetera.
We have developed a working concept demo of a PDA with a VGA camera
attachment that is able capture a text image, process it, detect and locate text, OCR
manually selected text lines, and translate the text into another language, all running
in just a few seconds1.

1 Most of which taken by the optical character recognition.
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There were several challenges that needed to be addressed. First, embedded or
PDA cameras are typically low-resolution (e.g. 640x480) and will continue to be so
due to cost pressure. Second, we are in situations where the lighting conditions are
poor and can vary wildly across the visual field and soft shadows are also very
common (see Figure 5). Hence, we need to make sure that this uneven illumination
is dealt with in order to produce a binary text image that is free from large
thresholding artefacts and yet is not affected by local edge interaction between
adjacent text characters. Third, although mobile computing architectures are
becoming ever more powerful, there are still limitations that seriously affect
performance, such as a small working RAM, no mass storage, no floating-point
coprocessor and limited caching.
A good trade-off between speed an accuracy is therefore necessary for these sort of
applications. For instance, in a recent conference paper [3] discussing techniques
for a text capture translation application, most of the image processing was actually
done on a powerful server wirelessly connected to the device, because the
implementation of their text processing and extraction method took about one
minute on a 133 MHz PDA.
This paper describes the image processing pipeline used to process, enhance and
binarize raw text images captured by a hand-held camera and an extremely fast text
extraction method. The pipeline as described here has been implemented on an
actual PDA with camera attachment and has an inherent lightweight structure and
relative robustness to poor lighting and focus conditions. However, the deployment
of this method is not limited only to PDAs.
The approach is overviewed in Figure 1. Starting from a raw sensor image, we use a
new hi-pass colour demosaicing method to reconstruct colour planes from raw
sensor pixels. Next, we perform simple restoration (to attenuate the degradation due
to sub-sampling) by upscaling using a fast implementation of bicubic interpolation,
producing an image twice the original resolution. To the upscaled image we apply
an unsharp mask filter that enhances the high-frequency edges of the text
characters. Next we apply a non-linear retinex-based filter that removes low spatial
frequency lighting variations in the image and returns an enhanced image with
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Figure 1. Overview of the text image processing pipeline presented in this paper.
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uniform background, to which thresholding is applied to finally produce a binary
text image. Finally we use a variation of [7] for locating text in the image2.
The rest of the paper is structured as follows. Section 2 described the demosaicing
method, Section 3 image upscaling and sharpening, with an eye on some important
efficiency issues, Section 4 describes the fast text finding method and finally Section
6 provides some examples and discusses the benefits and limitations of the
presented approach.

2 HiPass Colour Demosaicing

Colour cameras in mobile devices typically use a single VGA resolution CCD array
employing three or more colour filters with each pixel capturing a single colour. The
most popular arrangement is the Bayer array which has alternating rows of Green-
Red and Blue-Green filtered pixels. Hence 50% of the pixels are green,
approximating luminance, and 25% each are red and blue reflecting the lower
spatial sensitivity to chrominance of the human visual system.
Full colour plane reconstruction, or demosaicing, requires the interpolation of each
colour plane (see [1] for a review of interpolation schemes). In order to maintain full
text resolution we have developed the HiPass demosaicing method [8] outlined in
Figure 2. The method attempts to decompose the mosaic into a high frequency
monochrome and low frequency RGB data. These can then be combined to

2 Note that the OCR method used will be not be discussed in this paper. In our
prototype running on a PDA we have ported an existing OCR package developed at
the Hewlett-Packard Laboratories.

Figure 2. HiPass colour demosaicing method.
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approximate the true full colour image. While some chrominance edges are
attenuated the method provides full resolution monochrome text and avoids most
colour aliasing artefacts for photographic images.
For each red, green or blue pixel in the raw mosaic (shown expanded into red, green
and blue colour planes in Figure 2), the corresponding pixel in the HiPass mosaic is
constructed by subtracting from it a corresponding low pass red green or blue pixel
constructed from the appropriate colour plane of the mosaic. This is then corrected
to remove zippering artefacts using a variant of the standard gradient-based
interpolation schemes outlined in [1]. Each pixel of the HiPass mosaic that is
derived from a red or blue pixel is corrected using a 1D quadratic interpolation
using the row of 5 neighbouring pixels in the vertical or horizontal direction
depending which has the lower intensity gradient. The interpolation is of the form
C0 = (2I0 - I-2 - I2 + 4I-1 + 4I1)/8, where I and C are the intensities of the HiPass
mosaic and its corrected version, respectively. The corrected HiPass mosaic is then
added to each of the low pass colour images to generate the fully reconstructed
image.
Improved computational effectiveness is achieved by low pass filtering using block
averaging over a 7x7 image neighbourhood. By maintaining a row wide table of
intermediate sums this can be achieved using 2 adds, 2 subtracts, a multiply and a
shift per pixel independent of the block averaging parameter.

3 Text image upscaling and sharpening

Although the input gray level image could be left at native resolution, experiments
and theory show that with a heavily under-sampled image interpolation kernels
such as bicubic interpolation act as true restoration processes [9]. To this end we
upscale the image by a factor of two using an efficient separable bicubic
convolution which requires very few add-multiply operations per pixel.
We use the Keys’ interpolating function [4] which approximates the sinc function
with piecewise third order polynomials:
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The value of a changes the shape of the kernel and there has been much literature as
to how this affects the output. In our implementation we left it as a parameter but

1−=a has given the best results in our opinion.
The kernel is separable, that is it can be applied first along the rows to produce an
intermediate upscaled image and then along the columns of the intermediate image.
Given that we are upscaling by a factor of two we can easily pre-compute a discrete

14x convolution vector au to be used for each pass. The kernel is different

according to whether we are interpolating a pixel in an even or odd (output) position
and is given by:
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After upscaling, we use the well-known unsharp mask filter to boost the image high-
frequencies and thereby produce a crispier text image. Unsharp masking works by
subtracting from the input image a smoothed version of it, and adding the result
weighted by a factor k back to the input. In our implementation, extreme care has
been taken in optimizing both memory usage and performance. In particular, we
create the smoothed image from the input via a very efficient block averaging (see
end of Section 2). The block width Ws is configurable but good results for the VGA
(640x480) images used were obtained with Ws=5. Let us now call by ),( jiIupscaled a

pixel of the input image and by ),()( lkI sW

smoothed a pixel of the block-smoothed image.

The formulation of the unsharp mask filter we used is modified from the standard

one and substitutes k with
k
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where k’ is a constant factor that controls the added amount of the sharpness and
usually ranges between 0.2 and 0.7. In our implementation we have used a fixed

5.0=′k .

4 Retinex-based intensity correction and
thresholding

In order to compensate for illumination variation an safely binarize the image we
use a method based on the retinex theory [5], a widely studied technique for colour
and illumination constancy.
The retinex approach is based on a simple model of image formation,

),(),(),( yxLyxRyxI ⋅= , where ),( yxI is the measured image intensity, ),( yxR is

the surface reflectivity and ),( yxL is the illuminant. There are several techniques

aimed at using this model in order to recover the reflectivity of the surface ),( yxR .

The most common ones use the assumption that (the basically unknown) ),( yxL

can be approximated by the low-frequency component of the measured image [6].
We have followed this approach but we tailored it to a situation where the desired
surface reflectivity is binary-valued. The process is illustrated in Figure 3. First we
block-smooth the input image with a large kernel (A). Next we compute the ratio
between the input image and the smoothed image (B); this amounts to solving for

),( yxR in ),(),(),( yxLyxRyxI ⋅= . The ratio is scaled to an 8-bit range to give

the illumination corrected image (C). Finally, a threshold is applied to transform thi
image into binary (D).
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From Figure 3 it is easy to see that since we expect black-on-white text, the ratio
should be at most 1 at uniform background pixels and it is relatively small with text
characters.
Let us now describe the actual formulation of the filter and its implementation. Let
us call by ),( jiI unsharp a pixel of the image as output by the unsharp process of

Section 3, and by ),()( lkI hW
smoothed a pixel of the block-smoothed image. Differently

from the smoothed image used for the unsharp masking of Section 3, here the
smoothed image should represents the illumination component of the image and as a
consequence the smoothing kernel must be rather large; in our implementation we
used 31=sW for 640x480 input images. We used block smoothing again for

efficiency reasons, and necessarily so with such a large kernel. We then have:
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unsharp

retinex ⋅=

where ),( jiI retinex is the illumination corrected image shown in Figure 3-C. The

results of this illumination correction stage can be also appreciated in the change
between Figure 5-C and Figure 5-D.
The final stage in order to produce a binary output image is thresholding. Given the
even background of the retinexI thus obtained, this image is amenable to global

thresholding. A single threshold τ = 200 yielded satisfactory results in a wide
range of cases. However the thresholding stage could benefit from a slightly more
sophisticated approach that would analyse the histogram of retinexI more locally. For

instance, experiments that we carried out with dual-peak thresholding applied to

retinexI have shown thinner and more accurate binary characters.

Finally, note that other formulations of the retinex principle can be seen in the
literature. A particularly common one is that of using as retinex output the
difference of logarithms of the original and smoothed image, which in our case
would be ( ) ( )),(log),(log),( )(' jiIjiIjiI hW

smoothedunsharpretinex −= . This formulation is

Figure 3. Illustration of the steps involved in the retinex-based filtering to perform
illumination correction and finally thresholding.
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obviously equivalent to the one employing ratio if we threshold '
retinexI with

( )ττ log' = .

5 Text finding and localization

As part of the text processing pipeline we have also designed and implemented a
lightweight text finding algorithm based on a cut-down version of [7] that analyses
a binary image and outputs regions where there is likely to be some text, which can
be either presented to the user for selection or automatically used for OCR. It is
outside of the scope of this paper to describe this text finding algorithm in detail and
we shall only briefly overview it and focus on the relevant modifications.
The algorithm starts from the binary image produced by the stage described in
Section 4 and assumes that the text lines are within a 20o range from the horizontal
(no assumptions of this kind were made in [7]). A fast connected component
method labels isolated binary blobs. Blobs that are too large or too small are
removed from further consideration. Then the blobs are sorted according to their
abscissas to speed up the search. At this stage we start the text-line grouping using
loose perceptual similarity, continuation and proximity criteria as detailed in [7].
However, differently from [7] we do not build a probabilistic network of blob
associations but using the assumption that the lines must be more or less horizontal
we perform direct search and growing of groups as we go along. Starting from the
first (leftmost, since we sorted them by abscissas) usable blob, we search for the
closest blob to its right and carry on from it until the blobs becomes either too
dissimilar in size, are too separated or deviate from the illusory line that the group is
forming, all in the same spirit of [7] albeit with a slightly different implementation
of the perceptual criteria. We carry on the search for other blobs until all the blobs
have been explored and all linear groups are formed. A further higher level pass
makes sure that groups are not duplicated and also merges collinear broken groups.
The method is able to group text lines under a considerable amount of rotation,
although the performance starts degrading after about 20o skew; the reason for this
is mainly due to the way the closest blob is found, that is not by searching for the
closest blob contour points as in [7] but by the vastly faster use of the blobs’
rectangular bounding boxes (see the blob bounding boxes in Figure 4-left).

Figure 4. Determination of the bounding box for skewed text (left) and the
occasional problems with determining the skew angle merely from the bounding
parallelogram (right).
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Once the groups are formed, we determine the bounding boxes for each group. In
Figure 4-left we show the process in the case of skewed text, where a parallelogram
is found with vertical lateral sides and with upper and lower sides parallel to the
best-fit line to the group and distant enough from it to contain all the connected
components’ bounding boxes. If any of the boxes are needed for OCR or display,
the best-fit line to the connected components or the bounding box itself can be used
to de-skew the text portion. Both methods might not always be reliable for short
text portion, as shown by the lower bounding box in Figure 4-right.

6 Results and Discussion

In this section we present and discuss a series of results of the stages presented in
the previous sections.
Figure 5-left shows the results of the three main stages of Section 2, 3 and 4, that is
demosaicing (A), upscaling (B), unsharp masking (C) and retinex-based
enhancement (D) along with the thresholded output in (E). In Figure 5-right and
there are shown three examples where the input images and resulting binary images
are shown side by side. It can be noticed that although the method performs well
with text of ordinary size it may mistake parts of oversized fonts as background
and cannot deal (as is) with reversed text, although improvement in this respect are
possible. However, the stages up to binarization proposed here perform

Figure 5. Left: Blowup of image portions showing all the stages that take the raw input
image to the binary output. A: Demosaicked image; B: Upscaled image; C: After
unsharp mask; D: After retinex-based filter (before thresholding); E: Thresholded
binary output. Right: Three full examples showing the input images and the binary
result from Section 4.
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satisfactorily in most common situations and cope well with dramatic lighting
conditions and shadows. But the primary advantages of the approach are that it is
extremely lightweight and memory lean and thus suitable for interactive time
processing on low-power architectures. As an example, the whole pipeline runs in a
fraction of a second on a current HP Jornada 568 PDA and uses little over one
megabyte of working memory.
Figure 6 shows some results of the text finding stage of Section 5 applied to the
some of the binary images of Figure 5.
The results are generally satisfactory in a wide range of cases but some limitations
of the method are worth noting. First above all, the method cannot cope with large
amount of rotation. It might deal with some perspective skew but it can break
likewise (but seem methods addressing this problem, such as [2][7]). The method is
inherently scale independent (see the “Multipix” image in Figure 6-top-right), but it
is strongly based on blob similarity and might not group lines with widely different
font sizes. Moreover, being based on the organization of text and not on local
properties, it cannot group isolated characters, as they are un-organized. Finally,
due to that same reason and the fact that we use pre-segmented blobs without
intensity information, the method might group blobs that verify organization criteria
such as proximity and similarity even if they are not even remotely text-like. In the
future we should investigate the abundant literature for a computationally efficient
method to detect non-text situations (e.g. using global statistical methods) or assign

Figure 6. Four examples of text finding using the algorithm described. Note the
heavily skewed lower-left example.
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a probability of being text to each blob in order to avoid grouping so blindly.
Having said this, the method has served us well due to its extremely good time-
performance trade-off and negligible memory use. It runs in just a few hundreds
milliseconds on our prototype running on a current HP Jornada 568 PDA.
Further information can be found on www-uk.hpl.hp.com/people/mp/research/text/ .
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