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Abstract 
 

This paper investigates the combination of spatial and probabilistic models for 
reasoning about pedestrian behaviour in visual surveillance systems. Models are learnt 
by a multi-step unsupervised method and they are used for trajectory labelling and 
atypical behaviour detection.  
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1 Introduction 
 
The aims of our research are to construct activity-related scene models and learn 
patterns of movement by observing the scene over long periods using video sequences 
of unconstrained outdoor environments. From this information, we can identify typical 
and atypical activity. In this paper, we investigate how the combination of geometric 
and probabilistic models can be used in a video surveillance system. The objectives are 
to build these models to answer questions like “Is this pedestrian’s behaviour typical?” 
“Where is this pedestrian moving towards?” and “What is the route of the pedestrian?”  

Our approach is an unsupervised multi-step learning method. First, a geometry model 
is learnt and then probabilistic models are overlaid onto it. This approach is motivated 
by the method by which human brain develops its visual perception: it seems to firstly 
build high-level abstract models that are enriched with more detail over time. 

In the earlier work [1], we constructed a geometric model of common routes through 
a scene using a discrete representation generated by observing a sample of pedestrian 
trajectories automatically extracted from video sequences. The model was described by 
a central spline bounded by an envelope representing the extrema of the observed 
trajectories ascribed to the route model.  

In this paper, we expand the model by adding probabilistic representations to 
improve its reliability. The model is augmented by modelling the distribution of 
trajectories across the route, supporting a more detailed description of activity and then 
a Hidden Markov Model (HMM) is constructed. In many cases, a single HMM is 
unable to express the variation of the route usage at different times, e.g. during “rush 
hours”, late at night or over the weekend. Hence, we construct multiple HMMs that 
reflect this temporal variation. 
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In [1], geometrical route models were proposed that can encode the common 
pedestrians’ paths and an algorithm that allows learning of these models from a set of 
trajectories. A similar method was presented in [2]. However, this method fails to 
encode the width of the routes, resulting in loss of information about the real geometry 
of the paths. In [3], low-level models (state models) are learnt initially and then mid-
level models (behaviour models) are constructed. Object behaviour prediction is 
performed by a Markov Chain. However, this approach lacks high-level interpretation 
of the scene and the behaviour. A Hidden Markov Model is used in [4] for behaviour 
recognition. The method requires only the entry/exit areas of the scene, which are 
defined manually, and segments the scene by uncovering the hidden states of the model. 
However, results were only provided for video sequences derived from a well-
controlled environment, so the efficiency of the method in real life is questionable. An 
Abstract Hidden Markov Model, which is a type of multi-layer Dynamic Probabilistic 
Network, was used in [5] to predict object behaviour over a wide spatial area. The 
method requires a hierarchy of locations, but these are defined manually. Summarizing, 
whilst many researchers have tried to learn either geometric or probabilistic models of 
activity, few of them provide a framework to learn both, automatically. 

In section 2, we summarize the geometric route model notation and introduce a Fuzzy 
Logic Trajectory Classifier (FLTC) that is used during the learning process of the 
geometric models. In section 3, we present probabilistic models that are overlaid onto 
the geometrical ones and a Maximum Likelihood Trajectory Classifier (MLTC) as a 
more reliable alternative to the FLTC. In section 4, we present some results of applying 
the algorithms in a real video surveillance system. 
 

2 Geometrical Modelling 
 

2.1 Route Modelling 
 
Pedestrian motion can be detected, tracked [6] and simply represented as a trajectory, a 
sequence of points on the image plane. For a given object i that entered the scene at 
time t0 and exited the scene at the time tn, this can be expressed as },{ ,,, jjj tititi yxp =

r
, 

tj=t0, t1…tn. Assuming that the differences (tj+1-tj) are small , the sequence  can be  
expressed  as a continuous  function  of  time )}(),({)( tytxtp iii =

r
, t0 ≤ t ≤ tn. 

Each route model consists of a sequence of N nodes. Each node is characterised by 
the position of the node on the image plane },{ kkk yxx =

r
, two bound points left and 

right of the node },{ kk lylxl =
v

, },{ kkk ryrxr =
r

 and a weight wk which indicates the 
popularity of the node. The main axis of the route and its boundaries are formed by the 
set of node positions and bound points respectively. The geometric route models are 
built using an unsupervised learning algorithm [1]. 

Figures 1 and 2 show the main route models computed for both image plane and 
ground plane trajectories (low popularity routes have been ignored, because they 
represent a relatively low usage). Using 2D ground plane coordinates requires no 
change to the model but derives several benefits. Because the model aims to encode the 
physical scene, it is obvious that a ground-plane based representation is closer to reality 
and the parameters that are used in the learning algorithm correspond to physical 
quantities. As a result, the algorithm is more sensitive to detecting routes that are more 
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distant from the camera. In addition, by utilising a common ground-plane coordinate 
system for a set of cameras, integration of route models across multiple cameras is 
possible. In this case, the trajectories are provided in ground plane coordinates by a 
camera calibration model [7]. 

      
                                (a)                                                                      (b) 
Figure 1: Route Models learnt over (a) 1-hour period using 647 trajectories and 
(b) 24-hour period using 3460 trajectories. 

                    
                                       (a)                                                                 (b) 
Figure 2: Route models learnt on ground-plane coordinates, over (a) 1-hour period 
using 317 trajectories and (b) 24-hour period using 2744 trajectories. 
 

2.2 Fuzzy Logic Trajectory Classifier (FLTC) 
 
Trajectories or parts of trajectories are classified into route models, either during the 
learning process or during the normal operation of the surveillance system. In [1], the 
trajectories are classified by a Boolean classifier, according to a distance criterion. This 
approach is appropriate when trajectories are in areas where routes are not overlapped 
and no ambiguity exists. However, when substantial overlapping occurs, an uncertainty 
arises, which cannot be quantified by the Boolean classifier. An optimal approach (in a 
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Maximum Likelihood sense) would require knowledge of the distribution of the 
observations across each route. Because this distribution is not known prior to the 
generation of the geometric model, we introduce a method that encodes the trajectory 
distribution across a route, and uses Fuzzy Logic to bootstrap the route construction 
process. 

Using this approach, certainty estimates are calculated for point-node matches and 
then an overall certainty is estimated for the trajectory-route match. An asymmetric 
membership function is used (Fig.3), that captures the characteristics of the distribution. 
The distribution is modelled by a function g of a point p

r
 lying in the normal direction 

of the node i and is defined as: 
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−−−=  and ii lb
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=  or ii rb
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= , under the condition 

0≥−⋅− iii xbxp
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. If thresholdxb ii <−
rr

, we set thresholdxb ii =−
rr

at (1). The 

threshold distance is defined as the distance either side of the route boundaries where 
matching is still possible.  

b 
Figure 3: Proposed membership function that models the distribution of 
observations across a route node. ix

r
 is the position of the node and il

r
, ir
r

 are the 
two bound points. The point p

r
 is supposed lying on the normal direction of the 

route. 

To classify a trajectory within a route model j using the FLTC, the trajectory is 
sampled by the node normals of the route. For each trajectory sampled-point 

jip
r

 a 

weighted estimate [8] 
jig  is given according to (1). Then certainty estimate of a 
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trajectory-route match })({ph j
r′  is given by the minimum of the certainty estimates of 

the point-node matches (2). Finally, the certainty estimate is normalized by dividing by 
the sum of the certainty estimates for all the trajectory-route possible matches (3). The 
trajectory { p

r
} is classified to the route j that maximizes the certainty estimate. 
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The FLTC is used during the learning process to match trajectories with existing 
route models. In the case that multiple matching occurs, all the matched route models 
are updated according to the particular certainty estimations. 
 

3 Probabilistic Modelling 
 
The geometric model that has been learnt in the previous section is used as a basis for 
the probabilistic models that are built in this section. In section 3.1, distributions of 
observations across the routes are learnt and the Maximum Likelihood Trajectory 
Classifier is introduced. In section 3.2, a Hidden Markov Model is built, aiming to 
enable the interpretation of pedestrian behaviour.  

In probabilistic terms, the set of trajectories is considered as a stochastic process. We 
begin with a simplifying assumption that the occurrence of trajectories is stationary and 
does not vary significantly over time. In section 3.3, we discuss the validity of this 
assumption. 
 

3.1 Cross-Route Distributions and ML Classifier 
 
Having acquired the geometric model, distributions of observations across the routes are 
learnt and incorporated into the model. Figure 4 shows the estimated pdf of 
observations across selected nodes for a specific route. 

The knowledge of the distributions across the route allows the use of a Maximum 
Likelihood Trajectory Classifier (MLTC) as a more accurate alternative to the FLTC. If 

jig represents the pdf. of observations across node ij of route j, the probability })({ph j
r′  

of a trajectory p
r

 under the condition that it belongs to the route j is given by (4), 
assuming independent observations 

jip
r

. According to the ML criterion, the trajectory 

is assigned to the route that maximizes the probability jh  as given by (5). 
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Figure 4: Route model and derived distributions of observations across five 
selected nodes. Node ordering is from bottom left to top right along the route. Red 
dashed lines indicate the boundaries (envelope) of the route at each node. The x-
axis indicates the distance from the main axis of the route in pixels. 
 

3.2 Hidden Markov Model 
 
The geometric model of the scene allows the assignment of trajectory points to route 
nodes and by extension, the classification of trajectories to routes. The geometric model 
is a hierarchical discrete representation in two levels: the high level model represents 
routes as a series of paths and junctions, whilst the low level model is based on the 
route nodes. The discrete nature of the model allows discrete-state models like Markov 
Chains and Hidden Markov Model (HMM) to be applied. Therefore, four possible 
Markov models could be built, depending on the level of the scene interpretation and 
the type of the model. We select to build a Low Level (LLHMM) because it can encode 
a wider range of activity in the scene. 

We define the states of a Low Level Hidden Markov Model to be the nodes of all the 
accepted route models, plus two extra states: an “out-of-any-node state”, which 
indicates activity outside the modelled routes and an “end state”, which indicates the 
end of the observation. It is sensible to derive the nodes from uni-directional routes, so 
that directionality information is incorporated at each node. 

The elements of the LLHMM are: 
- S={Si}, i=1..N, the set of states. 
- Q={qk}, k=1..M, the sequence of the states.  
- A={aij}, i,j=1..N, the transition probability distribution, where aij=P(qt+1=Sj | qt=Si). 
- π={πi,} i=1..N, the initial state distribution, where πi=P(q1=Sj). 
- O={Ok}, k=1..M, the sequence of the observations. 
- B=[bi(Ok)], i=1…N, Ok: observation vector, where bi(Ok) is the pdf of the 

observation vector. 
The HMM parameters are recommended to be learnt using iterative algorithms. 

Because of the large number of states, these algorithms are very slow and often 
impractical, especially for online learning. Instead, we use the pdf distributions of 
observations across the routes to encode the observation vector B (6). Then the 
LLHMM parameters are estimated cumulatively (7), (8). 
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where Ol,k is the kth observation from the lth trajectory l=1..L, k=1..KL.and gi(Ol,k) is 
the estimate of the probability that the observation Ol,k corresponds the state i, according 
to the associated learnt cross-route distribution. 

HMMs can provide temporal predictions. The probability of a state j after K time-
steps, assuming the observation vector O is given by the following equation: 

(K)
ji,

1
21 a)()...( ∑

=
+ ⋅==

N

i
kkjKk iOOOSQP δ  (9) 

where (K)
i,ja  is the element {i,j} of the matrix AK and )(iKδ , defined in [9], represents 

the maximum probability of the state i at the time-step K, given the observation vector. 
In order to derive spatial predictions, for instance the probability of an object exiting 

the scene at node j, HMM theory cannot provide a well-defined solution to this 
problem. This is because it must consider the infinite number of different sequences of 
states that lead to termination of object at the node j. An implicit estimation is provided 
by a route-level interpretation and using the probability )(iKδ . 
 

3.3 Long Term Temporal Variations 
 
The HMM that we described in the previous section is built under the assumption that 
the trajectories are generated by a stationary stochastic process. In many cases, this 
assumption is invalid, as pedestrian behaviour may be dependent on the time of day. For 
instance, for the scene of Fig. 1, which is the entrance of the University, we expect that 
in general, between 8am and 10am, most pedestrians will walk to the entrance of 
University; from 1pm to 2pm, they will wander around outside the entrance; at 5pm 
many will leave the University and at midnight, hardly anyone will be around. 

However, we can assume that pedestrian behaviour remains the same for short time 
periods (e.g. 15 min-1 hour) and this pattern is repeated every weekday at the same 
time. In addition, we assume that this time period is long compared to the lifetime of a 
trajectory. Therefore, we can establish a static HMM model for each time slot. It is 
obvious that such models need learning data from more than one day, so sufficient 
observations are provided for estimating the models of each time slot. 

In (7) the initial probability πi of the state i has been defined over the sum of the 
observed trajectories. However, a more reasonable approach is to multiply this relative 
probability with the frequency of the pedestrians’ appearing to derive an absolute 
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measure of the probability of a new appearance over time: 
T
Lπ ii ⋅=′ π . To illustrate the 

advantage of iπ ′  over iπ , let’s consider the case of 100 out of a total of 1000 
pedestrians starting their route from node i, between 10am-11am and 1 out of a total 10 
pedestrians starting from node i, between 10pm-11pm. In both cases, iπ takes the 0.1 
value, but this fails to indicate the fact that a pedestrian appearing so late is anyway 
atypical, which is made clearer by using iπ ′ . 

     
Figure 5: Initial probability iπ  of the two terminator nodes of the route in fig.4, 
during a 24-hour period. x-axis indicated the time of the day. At 8-9am, almost all 
trajectories occur towards the entrance of the University, whilst around 5pm, 
people tend to leave. 

      
Figure 6: Initially probability iπ′  over time for the two terminator nodes of the 
route in Fig.4. The peaks of the distributions have moved to 10am and 1-2pm, 
indicating that these are the most popular periods for people to come and leave the 
University respectively. 
 

4 Experimental Results 
 
Our motivation for investigating the probabilistic models is their applicability in a 

Video Surveillance system. In this section, we show how the proposed methodology is 
used for trajectory labelling and atypical behaviour detection. 

Behaviour recognition is performed by classifying the object trajectory to one of the 
existing routes. A Boolean classifier based only on the geometric model is sufficient to 
classify trajectories that match only one route for their entire length, but it cannot 
classify incomplete trajectories that entirely lie on overlapped routes. Such an example 
is illustrated in Fig.7. In the beginning of the sequence, the orange route dominates due 
to its very high popularity, but gradually the green route is matched. In this case, the 
MLTC provides a more appropriate interpretation.  

In the case that an object jumps from one route to another, the trajectory cannot be 
classified only to one route as different parts correspond to different routes. The 
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problem can be solved by splitting the trajectory at the point where all the state 
probabilities have become zero, which indicates that single matching is impossible. 
Then, the rest of the trajectory is matched to a different route. 

Identifying atypical trajectories is performed by estimating the probability of the 
trajectory, which is equivalent to the Observation Evaluation Problem. The solution, 
provided in [9], has been used for the results of Fig.8. 

 
Figure 7: Classification of an incomplete trajectory online by the ML classifier. 
The graph shows a plot of likelihood against time (in seconds) for matching the 
trajectory to the two route models.  

    
Figure 8: Evaluated trajectories are shown. Left trajectory characterised as 
typical, while the right trajectory is characterised as atypical (the red filled circle 
locates where this characterization is performed). Bear in mind that the left 
trajectory could be atypical if it occurred at a different time. 
 

5 Conclusions – Future Work 
 
A collection of models for pedestrian behaviour analysis has been presented. Geometric 
and probabilistic models are built sequentially, in a multi-step learning approach. First, 
a geometric model of the scene is learnt which defines its main routes. Then 
distributions are estimated that define the density of the observations across the routes. 
Finally, a low level HMM is superimposed on the geometric model. The entire learning 
process is fully automated and unsupervised. This set of the models has been used in an 
automatic video surveillance system for trajectory labelling and atypical behaviour 
detection. 
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Trajectory classification is required throughout the learning process and during 
online operation time. A Fuzzy Logic Trajectory Classifier is used during the geometric 
model learning. Next, the estimation of the cross-route distributions allows a Maximum 
Likelihood Trajectory Classifier to be used during both the HMM parameter estimation 
process and the pedestrian behaviour analysis.  

In the future, we will incorporate the set of models into the real time motion tracking 
system that we are developing. We aim to integrate route models across multiple 
cameras. We also aim to extend the use of probabilistic models in order to encode more 
complex behaviours. 
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