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Abstract

This paper presents a framework for multi-objed tracking from a single fixed
camera. The region-based representations of ead objed are tracked and pre-
dicted using a Kalman filter. A scene model is creaed to help predict and inter-
pret the ocduded o exiting objeds. Unlike the traditional blind trading during
ocdusion, the objed states are updated using partia observations whenever
available. The observability of ead objed depends on the predictive measure-
ment of the objed, the foreground region measurement, and perhaps the scene
model. This makes the dgorithm more robust in terms of both qualitative and
guantitative aiteria.

1 Introduction

Tradcking ron-rigid targets in low-resolution images has long been redized as a region-
based correspondence problem, in which ead target is mapped from one frame to the
next acording to its position, dimension, colour and ather contextua information.
When multiple targets exist and their dimensions are not negligible in comparison with
their velocities, ocdusion or grouping of these targets is a routine event. This brings
about uncertainty for the tradking, becaise the contextual information is only avail able
for the group and individual targets cannot be identified.

Existing region-based tracking algorithms use ather the measurement for the group
or the prediction for ead target to update the target estimate through gouping. Intill e,
Davis and Bobick [2] updated the cantroid of a target using that of the group and held
the velocity, size and colour estimates. Rosales and Sclaroff [5] modelled the two cor-
ners of ead target's bounding box and updated their positions using the prediction of an
Extended Kalman filter. Ellis and Xu [1] estimated the target, which is closer to the
group in state distance, using the group measurement and updated the other targets with
prediction. However, these dgorithms all suffer from poar performance for target esti-
mation during gouping or ocdusion. To estimate atarget with the group measurement,
the estimate of the target is often serioudly discontinuous at the start of grouping and
may be so misealing as to fail to find a match at the end o grouping. Target updating
using prediction is heavily reliant on the motion model and vulnerable to any violation
of the underlying assuumption during gouping, e.g. the target turning or acceerating, for
afirst-order motion model that assumes alinea trajedory and a mnstant velocity.
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We redizethat the targets in a group are often partiall y observable, becaise some of
their bounding edges constitute the four bounding edges of the group. If these partia
observations are fed into the estimation processduring gouping, the tradker should be
more robust and acairate than those without any observation. In this paper, our system
asumes that ead target has a mnstant height and width, and models the four bounding
edges of ead target by a Kalman filter. Once some alge is dedded to be observable
and its measurement is input to the tradker, its oppasite edge could be rougHy deduced
becaise the two oppaite alges dare the “same” (though disturbed by confined noise)
horizontal or verticd velocity acarding the mnstant height and width assumption. The
deduction of unobservable variables from observable ones can be ather dired or im-
plicit. The dedsion of target observahility is based on the group foreground measure-
ment, target predictive measurement, and perhaps a simple scene model.

2 Foreground Measurement

Our system uses frame differencing for change detedion in dynamic images. It com-
pares eat incoming frame with an adaptive badkground image and classfies those pix-
els of significant variation into foreground. To maintain a reliable badground image,
the probability of observing a value for ead pixel is modelled by a mixture of Gaus-
sians [7]. At ead frame, every new pixel value is chedked against the Gaussan distri-
butions. For a matched dstribution, the pixel measurement is incorporated in the esti-
mate of that distribution and the weight is increased. For unmatched distributions, their
estimates remain the same but the weights are deaeased. If none of the existing distri-
butions matches the aurrent pixel value, either a new distribution is creaed, or the least
probable distribution for the badkground is replaced. The distribution with the greaest
weight isidentified as the badkground.

The foreground pixels are filtered by a morphologicd closing (dil ation-plus-erosion)
operation and then clustered into foreground “blobs’ using a cwnneded component
analysis. A minimum number of foreground pixelsis st for eat blob to rule out small
disturbances. A foreground bob may correspond to an objed, a group of objeds due to

dynamic ocdusion, or part of an objed due to static ocdusion. It is represented by a
foreground measurement vector, b =[rC cnhor, cz]T , where (r, c) is the cen-

troid, (ry, ¢) and (r,, c,) are the two oppaite crners of the bounding box. ry, ¢4, o, C,
represent the top, left, bottom and right bounding edges, respedively (r, <r,, ¢, <¢C,).

In this paper, we use b(i) to represent the i-th element of the vedor b, e.g. b(1) =r,.

3 Motion Model

A Kaman filter based on a first-order motion model is used to track eat objed ac-
cording to the object measurement vector, z=[rC cnhegr, cZ]T. We distinguish
objead measurements from foreground measurements, becaise they are the same only
for separate objeds. Because our system aims to monitor pedestrians and vehicles, eat

target is asaumed to move dongalinea trgjedory at constant velocity and with constant
size In pradice, any minor violation of this assumption can be encoded in the process

covariance matrix. The state vedor used is x = [rC c. I, ¢ Ar, Ac, Ar, Acz]T , Where

778



=

BMVC

2002

(Ar,,Ac)) and (Ar,,Ac,) arethe relative positions of the bounding box corners to the
centroid. They not only incorporate height and width information, but also acarately
represent the bounding box even when the centroid is difted away from the geometric
centre of the bounding box, e.g. due to asymmetry or shadows.

The state and measurement equations are:

X = AX W (1)

z, =Hx, +v,

w, and v, are processnoise and measurement noise, respedively; the state transition
matrix, A, and measurement matrix, H, are

0, T, 0, 0,0

g) | 0. O a a, 0, O, Ozg
2 b2 2 2
A= JH :az O, I, O,n 2

o, o, I, 0,0
0, 0, |
) 02 02 IZE HZ 2 2 ZE

where |, and O, are 2x2 identity and zero matrices; T is the time interval between
frames. The a priori estimate, X, , and a posteriori estimate, X, , are related hy:

Xy = ARy

ab o .

X =X, +Kk(zk _ka)
where Ky is the Kalman gain matrix that is sught to minimize the a posteriori covari-
ancein aleast-square sense.

4 Scene Model

©)

Because the canera is fixed, a scene model can be @nstructed for a spedfic canera
pasition. Whilst thisis currently done manually, the previous work on path learning [3]
may be extended to derive an automatic method for leaning the scene model. This
helps reasoning about the termination and ocdusion of objeds by scene dements.
Threetypes of static ocdusionsin ascene aeidentified (Fig. 1):

e Border occlusions (BO), due to the limits of the canerafield-of-view (FOV).

e Long-term occlusions (LO), where objeds may leave the scene ealier than
expeded, corresponding to the termination of a record in the objed database.
The long-term ocdusion may exist at the border (e.g. buil dings or vegetation) or
in the midd e of animage (e.g. at the doars of a buil ding).

e Short-term occlusions (SO), where an objed may be temporarily ocduded by
astatic ocdusion, e.g. atreeor aroad sign. Prior knowledge of these ocdusions
helps avoid misgng existing objeds and creaing “new” objeds.

Eacdh ocdusion is charaderized by itstype (BO, LO or SO) and baunding box repre-
senting its location and dmension. The overlap of these static ocdusions with the pre-
dicted centroid of an objed can be used to predict objed termination and ocdusion.
After the a priori estimate of the state is determined, eat objed is subjed to the status
prediction based on the scene model and predictive measurement:

z, =HX%, 4)
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Fig. 1: Static ocdusionsin a scene.

« Anobjed is labelled as PREDICT_TERMINATED if its predicted centroid, (Z, (1),
Z, (2)), iswithin a long-term ocdusion (LO) or the outer limit of the border oc-
clusion (BO).

* Anobjed islabelled as PREDICT_OCCLUDED if its predicted centroid is within a
short-term ocdusion (SO).

5 Partial Observability

For tracking multiple objeds in a complex scene, it is noted that the objed measure-
ment, z, , may be ather partly unavail able or completely unavail able. This occurs due
to dynamic ocdusion between objeds, static ocdusion, or just the fail ure of foreground
detedion. Fig. 2 shows ome examples of partial observation.

5.1 Deciding Observability

We dedde the observability of the objeds based on the predictive measurement, 2, ,
the foreground measurement, b, , and perhaps the scene model. The outcome is repre-
sented by the observability vedor, m,, which has the same dimension as the objed
measurement vedor, z, (their elements are in one-to-one @rrespondence). Each ele-
ment of m, has only two possble values. 1 for OBSERVABLE and O for UNOBSERVABLE.
The centroid is determined as OBSERVABLE only when all the four bounding edges (r4,
C1, I'2, Cp) are OBSERVABLE.

(1) Observability in grouping (Figs. 2(a) and (b))

 For ead foreground blob, all the objeds that have their predicted centroid, (Z,
(1), z, (2)), within the blob baunding box are cunted.

e If the count is more than 1, the relevant objeds form a group and are dl asci-
ated with that blob.

+ Within such a group, if an objed has the minimum z, (3) and/or Z, (4), itsry
and/or ¢, become(s) OBSERVABLE; otherwise it iS UNOBSERVABLE.

 Within such a group, if an objed has the maximumz, (5) and/or Z, (6), itsr,
and/or ¢, become(s) OBSERVABLE; otherwise it iS UNOBSERVABLE.
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Fig. 2: Partial observations when objeds are grouped (a)(b) or behind a static ocdu-
sion (c). Grey lines represent the foreground baunding boxes; thick and thin bladk
lines represent observable and unobservable bounding edges of objeds, respectively.

(2) Observability in ocdusion (Fig. 2(c))

« For eat objed, ched ead of its predicted baunding edges. If either corner de-
limiting that edge is within a short- or long-term ocdusion, that edge becmes
UNOBSERVABLE; otherwise it iS OBSERVABLE.

It is noted that the observability of an objed also depends on the observability of its
associated foreground measurement, n, , which has the same dimension as the objed
measurement, z, . If the bounding box of this foreground measurement touches the bor-
der of the FOV, its relevant bounding edge becomes UNOBSERVABLE and thus inhibits
(masks) the relevant observability for the esociated oljed(s), i.e.:

m,=m, &n, ®)
where & represents the logicd AND between corresponding elements in two vedors.
5.2 Using Observability

For a ompletely unobservable objed, its date is updated using its predictive state,
X, =X, . For a partialy unobservable objed, a pseudo measurement vedor is consti-
tuted, which members can be dasdfied into two inter-correlated blocks (r., rq, rp) and
(Ce, €1, C). The inter-block variables are bound by the constant height (Ar, and Ar,) and
constant width (Ac, and Ac,) asaumption. Within ead block, if &l the variables are
unobservable, the only clue for their measurements are the prediction, which refleds the
constant velocity assumption; if part of its variables is observable, the unobservable
measurements can be jointly deduced from the observable measurement, refleding the
constant size aaumption, and the prediction. Suppose the observability matrix, M, is a
diagonal matrix whose main diagonal is the observability vedor m,. The pseudo meas-
urement vedor is estimated by:

Mb+ [ad +1 a) ] (6)

where dy is the diredly deduced measurements of unobservable variables from observ-
able measurements, and o controls the mmbination weights between the diredly de-
duced measurements (constant size aaumption) and the prediction (constant velocity
asuumption). If all the variables in an inter-correlated block are unobservable, d, =2,
for that block and thisis equivalent to a = 0. The height and width information in the a
priori state egtimate, X, , is used to compute d.
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6 Tracking Algorithm

Our system worksin a frame-based loop, which is simmarised in the foll owing:

» Compute the foreground measurement, b, , and dedde its observability, n, .

« For eat tracked ohjed, compute its Mahaanobis distance with ead foreground
blob. If the predicted centroid of the objed is within the bounding box of the
foreground biob, the Mahalanohis distanceis st to zero. Seled the best-matched
foreground biob for eat objed acwrding to the Mahalanohis distance

e |If multiple objeds have the same best-matched blob, keep the one(s) with the
smallest or zero Mahalanobis distance, and attribute the other(s) an inhibiting
Mahalanobis distance

» Deted objed grouping. Dedde the observability vedor, m,, and the measure-
ment, z, , for ead objed.

* For eat objed with an alowable minimum Mahaanobis distance to some fore-
ground blob, estimate its gate with the measurement, z, , if it is at least partialy
observable; otherwise update its tate using the predictive state, X, =X, .

¢ For ead utmatched oljed
(1) It isasumed to be terminated, if it is PREDICT_TERMINATED or has been un-
matched for k frames.

(2) It is asumed to be behind static ocdusions or lost in foreground detedion.
Update it using the predictive state, X, =X, . If not PREDICT_OCCLUDED, it is
subjed to termination after k frames.

» For eath utmatched foreground blob, a new objed is creaed and its gate is ini-
tiated by b, and zero velocity.

« Computethe a priori estimate of ead objed for k+1 and predict its datus.

7 Results

To evauate the performance of our tradking algorithm, we have tested it on a range of
image sequences and compared it with other two agorithms using blind tradking
throughocdusion. To distinguish the dfed of using partial observation, both agorithms
were designed to be the same & the new one (e.g. the same Kalman trader), except
their treament to oljedsin grouping or ocdusion:

e Algorithm 1 00 The objed with the smallest Mahalanobis distance to the group
foreground blob is estimated with the measurement of the group, z, =b, ; the
others are updated using prediction, i.e. X; =X, , asin[1].

e Algorithm 2 O All the objeds in a group are updated using prediction, i.e.
Xi =X, asin[5].

The image sequences used for the demonstration in this paper are the testing dataset

1 (CAM1 and CAM?2) for PETS 2001[4]. We processd frames 1 to 2681at a tempo-
rally sub-sampled rate of 5 (smulating 5 fps) and at the half frame size (384x288). k=5
in our experiments. In the image results sown below, bladk and white boxes represent
foreground blob measurement, b, , and ojed a pcsteriori estimate, X, , respedively. A
white dotted box represents a partly or completely unobservable objed. A white airve
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Fig. 3: Example 1 of objed trading throughocdusion, (a)-(c) using Algorithm 1
and (d)-(f) using partia observation (a =0).

represents the centroid trgjecory of an adive objed.

7.1 Qualitative Performance

Fig. 3 shows an example of tracking throughocdusion. In this example, a group of peo-
ple (objed 4) walk toward and then passby a stationary car (objed 2). At frames 946-
991, both the objeds are grouped and segmented as a large foreground blob (Fig. 3(b)).
Algorithm 1 matches the group foreground biob with objed 4, the size of which is then
gradually adapted to that of the group measurement. After the group of people is Flit
from the ca and segmented as a separate, smaller foreground blob (Fig. 3(c)), Algo-
rithm 1 rejeds the match between this blob and oljed 4, due to the gred differencein
size ad pasition, and creaes a new objed (Objed 6). Therefore, the group of people
changes its label after the ocdusion. By using the partial observation, the locaion and
sizeof objed 4 ismore acarrately estimated during ocdusion (Fig. 3(e)). Finaly, objed
4 is corredly matched to the separate foreground blob (Fig. 3(f)).

Fig. 4 shows another example of tradking through ocdusion. In this example, a dark
ca (objed 11intoprow and oljed 10in bottom row) moves toward a stationary white
van (objed 3) and finaly ocdudes it. At frames 22462496 both the targets are seg-
mented as a large foreground bioh. Algorithm 2 uses linea prediction to update the es-
timate of objed 11 during the grouping. Because objed 11 moves in a non-linea tra-
jedory, there exist some erors between the estimate and the foreground blob measure-
ment (Fig. 4(b), seethe unfitted batom and right bounding edges). These estimation er-
rors acaumulate and oljed 11 finaly fail s to match the crresponding foreground blob
(Fig. 4(c)). Using the partial observation, the bottom and right bounding edges of objed
10 are dosely fit to the foreground blob (Figs. 4(e) and (f)). Objed 10 even has a non-
linea trgjedory during gouping (Fig. 4(f)), which indicates the linea motion model
has been continuoudly adapted to the non-linea motion. It is also noted that the estimate
of the top bainding edge of objed 10is not acarate (Fig. 4(f)), because it has been un-
observable for alongtime.

For al the 9 grouping events (19 oljeds involved) in which objeds merge and then
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Fig. 4: Example 2 of objed trading throughocdusion, (a)-(c) using Algorithm 2
and (d)-(f) using partial observation (a =0).

split, we counted the mis-tradking events in which any objed in a group changes its la-
bel after splitti ng. The result shown in Table 1 indicates that the new a gorithm performs
more reliably than Algorithms 1 and 2

Algorithm1 | Algorithm?2 | New (a=0) | New (a=1)
Court of Errors 1 2 0 0

Table 1. Counts of erroneous tracking in 9 grouping-and-splitti ng events.

7.2 Quantitative Performance

The alvantages of partial observation are not only refleded in the qualitative compari-
sons as above, but also exist in some quantitative measures applied on the tradking re-
sults in which both Algorithms 1 and 2 succeeal. The first measure is the tradking error

between adual and predictive measurements, i.e. e =||zk —2;". For objeds updated

using prediction, thiserror is %t to zero.

The second quantitative measure is the path coherence, which represents a measure
of agreement between the derived oljed trgedory and the motion smoothness con-
straints [6]. Suppose s, is the segment between the cantroid estimates at two conseautive

frames, s, = X, (D) =X, (D), X; (2) - f(k_l(Z)). The path coherencefunction used is:

0 0 O O
S P e o

+w,d
8 [sdlscalE “H lsd+lseall

where the weights w; and w, control the importance of diredion coherence and velocity
coherence(w; = 0.5 and w, =0.5 in this paper), and @, O[0,1] .

These two quantitative measures were seleded becaise they are the basis of most
existing motion correspondence dgorithms that usualy assume the smoathness of mo-
tion. These measures are demonstrated using the example shown in Fig. 5, which is
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Fig. 5: Example 3 of objed tracking wsing partial observation (a =0).

overlaid by the trading result using partial observation. In this example, a white van
(objea 3) first passes by a newly stationary dark car (objed 2), heads toward and oc-
cludes a group o people (objed 4), decderates and stops sparately at the right border
of the FOV. Objed 3 has been grouped at frames 806-941. Due to the linea trgjedories
for the objeds involved, Algorithms 1 and 2 also succeeal in this example. However,
these two algorithms have diff erent performance based on our quantitative measures.

Fig. 6 shows the tradking errors and path coherence values for objed 3 in Fig. 5, re-
sulting from al the three dgorithms. There ae two padnts that should be noted. Firstly,
the centroid estimation error only acounts for about one third of entire trading error,
becaise the latter also includes the arors for two baunding corners. Secondly, the zeo
values in the tradking error and coherence function for Algorithms 1 and 2 arise from
grouping and state updating wsing prediction, representing urcertainty rather than per-
fed tradking. Therefore to be fair, our comparison is concentrated on the measures just
after the end of grouping (frame 946). At that time objeds 3 and 4 split and are re-
tradked; the tracdking error and coherence ae expeded to have aped vaue.

100, 1

% 0.9
80 0.8
70 07
60 06

50 05

20 0.2 k
10 01
A

h 800 850 900 950 1000 (b) 800 850 900 950 1000
Frame Number Frame Number

Fig. 6: (a) Tracking errors in pixels and (b) path coherence, for objed 3 in
Fig. 5, using Algorithm 1 (thin blad lines), Algorithm 2 (thick grey lines),
and partia observation (a =0, thick blad lines).

For the 12 ohjedsinvolved in al the 6 grouping-and-splitti ng events in which all the
three agorithms succeal, the pesk values of the new algorithm are lower than those of
Algorithms 1 and 2 in ead case; the average pedk values are shown in Table 2. The
guantitative measures for the new algorithm is much lower than those for Algorithms 1
and 2, indicaing its improved performance The reason is, even fed by partial observa-
tion only during grouping, objeds could deduce their unobservable bounding edges ac-
cording to the built-in relation among members of the measurement vedor. For exam-
ple, on the assumption of constant size, the left and right edges of an objed should share
a horizontal velocity, and the top and batom edges sould share averticd velocity. The
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deduction of unobservable variables can be dther dired (a = 1) or implicit when the
Kaman filter seeks the optimal solution for the a pasteriori estimate (a = 0). In the lat-
ter case, the measurements of the observable variables are propagated to the unobserv-
able variables. Therefore, even with an incomplete measurement input, the objeds 4ill
have the estimates of al its four bounding edges adapted to the new, partial measure-
ment. Thisis partly refleded by the non-zero tracing errors of objed 3 during grouping
(Fig. 6(a)), which prevents the trading errors from acaimulating and makes objed 3
adaptive to the decderation. The dter-grouping pee&k measures of the new algorithms
using a = 1 fluctuate aound those using a = 0. Their relative values depend on whether
the constant size asumption (a = 1) or the mnstant velocity assumption (a = 0) is bet-
ter fit to the pradicd situationsin the testing sequences.

Algorithm1 | Algorithm2 | New (a=0) | New (a=1)
Tradking errors 2827 29.96 19.33 16.81
Path coherence 0.2765 0.2461 0.0923 0.0863

Table 2: Quantitative measures of the tradking algorithms.

8 Conclusions

We have presented a tradking algorithm utilizing partial observation of ead target
through gouping or ocdusion. The unobservable variables can be estimated by a Kal-
man filter based on the measurement of observable variables, the state prediction, as
well as the scene model. This makes target estimation adaptive to small changes of di-
redion and accéerations during gouping or ocdusion. The new algorithm has advan-
tages over traditional blind tracking schemes in terms of lower tracing errors and better
path coherence
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