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Abstract

Tracking strategies usually employ motion and appearance models to lo-
cate observations of the tracked object in successive frames. The subse-
quent model update procedure renders the approach highly sensitive to the
inevitable observation and occlusion noise processes. In this work, two ro-
bust mechanisms are proposed which rely on knowledge about the ground
plane. First a highly constrained bounding box appearance model is pro-
posed which is determined solely from predicted image location and visual
motion. Second, tracking is performed on the ground plane enabling global
real-world observation and dynamic noise models to be defined. Finally, a
novel auto-calibration procedure is developed to recover the image to ground
plane homography by simply accumulating event observations.

1 Introduction

By far the most common approach to tracking in typical surveillance imagery uses pixel
differencing and blob analysis. Typically motion detection extracts moving regions from
static scenes[7]. Trajectory tracking is employed to establish the temporal history of in-
dividual objects. An iterative estimator (e.g. Kalman or �-�) is employed to update a
first or second order visual trajectory model. Temporal correspondence (or data asso-
ciation) is achieved essentially using simple Newtonian physics either locally for each
object, or globally by considering all possible object-observation pairings[1]. Addition-
ally an appearance model matching may be employed to improve tracking accuracy by
comparingwidth and height, shape or colour[6, 5]. While surprising successful, maintain-
ing temporal correspondence is a significant problem particularly through occlusion and
fragmentation where the shape, dimensions and colour signature of the merged or frag-
mented observations do not correlate well with the actual object, or where the trajectory
model does not correspond to actual object trajectory.

Two related problems are addressed in this paper. First the problem of frequent frag-
mentation andmerging of moving regions caused by occlusion and low contrast processes.
These unexpected regions usually introduce considerable noise into the data association
phase of the tracker and, more subtlely, into the updating of the trajectory and appearance
models which is then propagated into the subsequent frames. Typical solutions are com-
plex and ad hoc split and merge procedures applied to observation and appearance model
primitives[3, 4, 2].
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The second problem relates to the choice of motion model. Linear pixel-basedmotion
models applied to trajectory and appearance models are too constrained to adequately
model the evolution of objects - particularly vehicles. The result is frequent loss of cor-
repondence as objects manoeuvre in the scene. On the other hand, more appropriate
quadratic models are easily mislead by observation noise. The difficulty lies in the prob-
lem of establishing global pixel-based noise models which are appropriate to both distant
visually-slow objects at the top of the image, and closer objects with larger visual veloci-
ties at the bottom.

In this work, we introduce three mechanisms to address these problems which rely on
knowledge about the ground plane. First we develop highly discriminatory bounding-box
appearance models of scene objects which indirectly use the depth of the object to model
its projected width and height. Since, the spatial extent of an object is now a function of
image position, the tracker will be more robust when presented with the distorted obser-
vations which arise from fragmentation or occlusion processes. Second, the observations
are transformed onto the ground plane coordinate system within which a quadratic rather
than linear motionmodel is defined. Global real-valued noise models can be generated for
observation and dynamic noise models. Finally, rather than relying on a labour-intensive
calibration procedures to recover the image to ground-plane homography[8], the system
relies on a simple auto-calibration procedure to learn the relationship between image and
world by simply watching events within the monitored scene.

2 Auto-Calibration of the Ground Plane

In this section a simple yet highly effective method of learning the image to ground plane
homography of the camera is presented which exploits the simple but reasonably accurate
assumption that in typical surveillance installations, the projected 2D image height of
an object varies linearly with its vertical position in the image - increasing down the
image from zero at the horizon. This height model is derived from the optical geometry
of a typical visual surveillance installation. In addition, such an assumption enables the
use of simple but highly discriminatory models of the appearance of scene objects which
indirectly use the depth of the object to model its projected height. In this auto-calibration
scenario, the ground plane coordinate system (GPCS) is defined as follows:

The � -axis �� of the GPCS is defined as the projection of the optical axis along the
ground plane. The �-axis �� is defined as the ground plane normal. The position of the
camera focal point in the GPCS is ‘above’ the GPCS origin at the point ��� �� ��.

2.1 Ground Plane Projection

The image plane is situated at distance � (focal length of the optical system for the cam-
era) perpendicular to the optical axis ��. In this configuration a point � on the image
plane has coordinates �� � ��� 	����� . The pixel coordinate system 
� � (represent-
ing the row and column position respectively) is related to the image plane coordinate
system by � � ���� � ��� and 	 � ���
� � 
� where 
�� �� is the optical centre
of the image and �� and �� are the horizontal and vertical inter-pixel widths. Thus
�� � ������ � ���� �

�
��
� � 
������ � where ��� and ��� are the horizontal and vertical

pixel dimensions normalised by the focal length.
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An optical ray containing the focal point of the camera passing through the image
plane can be represented in vectorial form as � � �� �. Let 
 be the point of intersection
of the optical ray with the ground plane �. In order to calculate the position of the point

 on the ground plane � in the ground plane coordinate system, one must convert the
position of a point given the transformation ��� �� between the image plane and world
coordinate systems i.e. � � ������. Writing the ground plane equation as�� �� � �,
where the ground plane normal �� � ��, then the position� of the point 
 is obtained
by noting that� � �� � �.

� � ���� �� ���� (1)

The local GPCS is defined with a zero pan angle. Assuming no significant roll angle,
then after some algebraic manipulation, the ground plane coordinates may be related to
the look-down angle � as follows

�

�
�

��� �� � ���

��� �
� 
�� �	
 � � ��� �
�

�

�
� �

��� �
� 
�� ��� � � �	
 �

��� �
� 
�� �	
 � � ��� �
(2)

Thus to compute the ground plane position of an image point, the following camera pa-
rameters 
�� ��, ���� �

�
� and � are needed. In our approach the optical centre 
 �� �� is

computed by an optical flow algorithm which robustly fits a global zoom motion model
to a three frame sequence undergoing a small zoom motion.

2.2 Projected Object Height

If one assumes that the height of a moving object is known (i.e. a person) then the point of
intersection� with the ground plane can be shifted along the �� direction by the height
� . Using �, we can write� � � �������� ��. The new image point��� corresponding
to the projection of the top of the person can be computed from the inverse transformation
�� �� � � �� to yield

���� � ��� ���� �� (3)

where � is the projection factor from the image plane to the top of the person. Substituting
� from equation 1 and �� � � yields

��� � �
�

�

�
��� �� �

�

�� ����

��

�
(4)

To measure the projected vertical height of an object, we simply define a plane
 contain-
ing the optical centre and the image plane raster line containing the new point � ��. The
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Figure 1: (a) Camera, World and Pixel Coordinate Systems (b) Projected Height
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normal �� of this plane is defined by the cross-product between the projection line �� ��

and the rasterline direction vector �� as follows

�� � �
�

�

�
��� �� � ���

�

�� ����

�� � ��

�
(5)

The rasterline containing the point � �� can be thought of as lying at a distance � above
the projection of the bottom of the person - see Figure 1(b). Therefore the point vertically
above �� can be expressed as � � �� � ��� and belongs to the plane 
. Substituting
�� � ��� into the equation of plane 
, �� � � � �, generates

� � �
�� � �

�

�� � ��
(6)

Further simplification can be derived by expanding the numerator and denominator of
equation 6 using equation 5 as follows

���� � �
� � ���� �� � ��� � �� �

�

�� ����

��� � ��� � �� (7)

� ���� �� � ��� � �� (8)

since ��� � ��� � �� � �, and

���� � �� � ���� �� � ��� � �� �
�

�� ����

��� � ��� � ��

� ���� �� � ��� � �� �
��

�� ����

(9)

where �� � ��� � �� � � . Where there is a zero roll angle, equations 8 and 9 combine to
generate the following expression for image plane height � which depends only on object
height� , camera height � and vertical image height 	.

� �
��� � 	�� �	
 � ��� � � 	������ � � �	
� ��

	 �	
 � ��� � � ����� � � �����
(10)

For typical camera installations, � can be shown to effectively vary linearly with ver-
tical image position relative to the position of horizon. Figure 2 plots projected height
against image position for a typical ���� ��� camera with focal length � � ���� and
angular field of view of � ��Æ. Three different camera height/lookdown angle configura-
tions are shown � � ���� � ��� (i.e. ��Æ down from horizontal), � � ���� � ���
and � � ����� � ���. Average person height is assumed to be � � �����. Note for
the given range of image positions, the plot is essentially linear. The intercept with the
vertical position axis (or � � � axis) defines the horizon where objects become infinitely
small.

Such a linear model may be extracted from the scene automatically by accumulating
a histogram� �
� �� (where � is the pixel height) from a large number of detected moving
regions of the monitored scene - see figure 31 and 4. Currently the operator drags a line
segment along the ridge structure to define the gradient � and horizon 
 �.

1PETS 2001 Datasets visualsurveillance.org
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Figure 2: Projected Height versus Vertical Position

Figure 3: (a) PETS Camera 1 (b) PETS Camera 2 (c) Football

Figure 4: (a) DIRC Camera 1 (b) DIRC Camera 2 (c) DIRC Camera 3
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2.3 Ground Plane Calibration

Since the vertical image height of an object is independent of the horizontal image po-
sition of the projected object, the following derivation may assume, without loss of gen-
erality, that the object is located on the vertical axis i.e. � � �. Two key positions of a
projected object may be defined at 
 � 
� at the horizon, and 
 � 
� at the optical centre
of the image. At the former, the look-down angle � may directly related to the horizon
parameter 
� extracted from the accumulated training data acquired in the learning stage
described in section 2.2 i.e.

��� � � ����
� � 
�� (11)

For the latter case, consider an object of height � standing on the ground plane point
given by the projection of the optical axis. From equation 10, the vertical height at this
point ��
 � 
�� may be related to the look-down angle as follows

�

�
�

� ��� � �	
 �

��� ���� �
(12)

An estimate of the height � may also be generated from the learnt linear projected height
model i.e. ��
�� � ����
�� 
��. Combining this with equations 11 and 12, the following
expressions for the camera parameters � and ��

� may be derived

�	
� � �
�

�

���

�� �
� ��� �

��� �

�
� � 
��
(13)

2.4 Evaluating Ground Plane Calibration

The following section evaluates the accuracy of the auto-calibration technique by compar-
ing the estimated look-down angle with that recovered using the standard Tsai calibration
procedure[8]. The Tsai calibration results performed on the PETS2001 2 were not par-
ticularly accurate at estimating the camera height and look-down angle. Consequently
the evaluation was performed on four datasets; three local installations (DIRC 1, 2 and
3), and a Football dataset. The DIRC test installations involve different types of camera
placed at different heights overlooking a common carpark scene. The carpark has been
surveyed to generated real-world ground plane positions in a common coordinate system.
These points have been selected to ensure that each camera has ten well distributed point
in the image plane. The convex hull of these points contains most of the carpark and over
fifty percent of the visual plane. The real lookdown angles and camera heights have been
established using surveying equipment from the ground plane projection of the correct
optical axes. Results are shown in Table 1. In all cases, the accuracy of the Tsai method
and our own is comparable, with the shallow angle of view being the most problematic.
Additionally the Tsai confirmed that the camera had no significant roll - typically less
than �Æ.

2The PETS2001 datasets (visualsurveillance.org) are problematic as they contain so few tightly distributed
calibration points.
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Test Installations DIRC 1 DIRC 2 DIRC 3 Football

Correct Angle ����Æ ����Æ ����Æ n/a
Tsai Angle ����Æ ����Æ ���Æ ����Æ

Our Approach ����Æ ����Æ ����Æ ����Æ

Table 1: Look-DownAngle For clarity the look-down angle has been redefined as �����
- the angle of intersection between ground plane and optical axis.

(a) Typical object (b) Detected pixels (c) Object Model

Figure 5: Modelling detected events: Images show (a) a typical example of a scene object,
(b) the pixels detected as moving, and (c) the Object Model.

3 Model-based Tracking

In this section, the projected height concept is employed to define simple yet highly effec-
tive bounding box appearance models for the principle object types within a surveillance
scene. The representation is composed of two vertically adjacent connected bounding
boxes - the object component and base component. The base is the large number of
background pixels beneath an object and the shadow regions which are typically seg-
mented with the object pixels themselves. The object component is defined by (i) the
vertical extent of the object - the height model, (ii) the horizontal extent of the object -
the width model, and (iii) the vertical extent of the base region - the base model. These
models, as illustrated in figure 5, are defined relative to the 2D position of the object -
the 2D projection of the position of the object on the ground plane. Three different mod-
els are currently used corresponding to each of the principle vehicles types � in the set
� � �������� � ��
 !�� �"�#� � ��
 !��. As with the ground-plane auto-calibration,
the parameters for each of these models must be computed in a learning procedure.

� � �� �
� 
��

$ � ����� �
� 
�� (14)

� � ���%��� �
� 
��

The Height Model: The expected pixel height � (see equation 14) varies linearly with
vertical image position 
. Different height models ��� � � � must be defined for each
type of object � - see figure 6(a). A further assumption is made that the projected height
of vehicles does not depend on the orientation of the object.

The Width Model: For vehicular objects, the projected pixel width $ varies both as a
function of depth (and hence varies linearly with position 
) but also varies as a function
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Figure 6: (a) Projected Height (b) Normalised Width. � � � indicates vertical motion,
while � � ���� refers to horizontal motion. The lower plot illustrates that Person width
does not depend on orientation. For vehicles, the width increases from a minimum at
� � � (face-on) to a maximum at � � ���� (side views).

of the 3D orientation of the object. The 3D orientation of a moving vehicle is correlated
with the direction of its visual motion. This relationship can be clearly demonstrated
in 6(b) which plots 2D width (normalised by vertical height) against the visual motion
direction � for a large set of detected regions. Thus the projected width of an event is a
function both 
 and the direction �.

The Base Model: The vertical extent of the base again varies linearly with the vertical
image position. In dull weather conditions, this base area is usually a small fraction.
However in bright weather conditions, this base area can be become significantly larger.
Currently, the base model parameter �� is manually set as a proportion of the height
model. Ideally some environmental illumination parameter %would select the appropriate
ratio.

4 Results

TheGround Plane Tracker (GPT) embeds the mechanisms introduced in this paper within
a standard tracking framework, and is compared against a standard 2D tracker - the Image
Plane Tracker (IPT). Both mechanisms employ a Kalman filter model whose observation
and dynamic noise models are learnt directly from the data. The two methods are sum-
marized in Table 2 below. Data association is performed by searching predicted bound-

Algorithm Image Plane Tracker Ground Plane Tracker

Measurements �� 	 image pixels ��� ground plane - equation 2
Motion Model First-order �� 	� ��� �	 Second-order���� ��� �� � ��� ��
Appearance Model First-order Kalman fil-

ter on bounding box di-
mensions ��&� ��� �&

Position and velocity constrained
bounding box model of equation
14

Table 2: Implementational Details of Standard and Proposed Tracking Algorithms

ing boxes for union of overlapping moving regions whose area is greater than ��� of
bounding box area. Model instances are instantiated from unassigned moving regions[7]
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whose areas are greater than some common threshold - 10 pixels (in quarter-size PAL
frames). In neither case is any additional appearance matching implemented to improve
data association. Observation position error is defined as deviation from predicted object
dimension. Each object has a time-to-live counter (TTL) defined as�	
�''�� ���which
is incremented if inter-frame match recovered, and decremented if no match recovered
with object deleted when ''� ( �.

To compare the different approaches a tracking error is defined as the number of
track failures per 1000 track frames. A track failure occurs when the tracking identity
of any ground truth object changes. Track frames are the total number of object appear-
ances for all tracks in a sequence. The experiment is run on three different datasets -
see Figure 2: the PETS 2001 Dataset 13 (an occlusion rich dataset of distant objects in
good lighting conditions), the Kingston Carpark Dataset (although relatively free of non-
static occlusions, objects exhibit considerablemotion variation against background under-
going frequent and severe lighting variations caused by intermittent direct and reflected
sunshine), and the Football Dataset (large number of objects undergoing correlated and
rapidly changing motions). Note that the tracking results reflect the challenging nature of

Tracker PETS DIRC Football

IPT 3.2 1.5 49
GPT 1.9 1.1 11

Table 3: Tracking Error

the Kingston datasets and, in particular, the Football Dataset. Nonetheless, the proposed
tracker outperforms the traditional tracker which is easily misled. Greater insight into
the problems of trackers can be gained by determining the nature and frequency 4 (� of
frames) of the failure modes - see Table 4. Both trackers loose track of objects that are

Failure Description of data association failure Frequency
IPT GPT

Fragmentation Unexpected small displaced observation 9% 2%
Static Occlusion Unexpected small displaced observation 23% 10%
Object Occlusion Unexpectedly large observation 36% 34%
Motion Model Motion model too constraining 21% 34%
Stationary Object Object merges into background 11% 20%

Table 4: Tracking Error

stationary for several seconds - determined by a TTL parameter. However the principal
weakness of the traditional tracker is when dealing with situations where (i) fragmenta-
tion or static occlusion processes shrink the search window with consequent failure to
locate validating observations, and (ii) occlusions which widen the search window caus-
ing the tracker to be deflected by the occluding object. These problems are more likely in
situations where the trajectory deviates from the assumed motion model.

3visualsurveillance.org/PETS2001/
4Frequency will be highly dependent on dataset.
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5 Conclusions

Traditional trackers employ simple bounding box search windows (a rudimentry Appear-
ance Model) to search for an appropriately sized moving region to validate the tracked
object. These search windows are typically smoothed height and width dimensions either
using ��� filters or Kalman filters. When used in parallel with trajectory tracking, these
search windows are often unstable leading to rapid track loss in noise, static or object
occlusion. This is partly due to the ease in which the dimensions of the search window
are distorted by the presence of fragmented or occluded moving regions, and partly due to
the typically overconstrained linear trajectory models employed. Second-order motioon
models are particularly difficult to control in image plane coordinates as even constant
ground plane motion is inappropriately modelled on the projected image.

One approach is to embed more complex (and computer intensive) appearance mod-
els into the tracking framework. However, this commendable approach may be comple-
mented by employing the highly constrained model-driven bounding box search window
proposed here, and can dramatically and demonstrably (see Table 3) improve the temporal
coherence of the underlying tracking process.
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