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Abstract

In recent work the authors proposed a wide-ranging method for estimating
parameters that constrain image feature locations and satisfy a constraint not
involving image data. The present work illustrates the use of the method with
experiments concerning estimation of the fundamental matrix. Results are
given for both synthetic and real images. It is demonstrated that the method
gives results commensurate with, or superior to, previous approaches, with
the advantage of being faster than comparable methods.

1 Introduction

An important problem in computer vision is estimation of the parameters that describe a
relationship between image feature locations. In some cases, the parameters are subject
to an ancillary constraint not involving feature locations. Basic examples include the
stereo and motion problems of estimating coefficients of the epipolar equation [6] and
the differential epipolar equation [1], each involving a separate ancillary cubic constraint.
The principal equation applicable in a variety of situations, including those specified
above, takes the form

������ � �� (1)

Here � � ���� � � � � ���
� is a vector representing unknown parameters; � � ���� � � � � ���

�

is a vector representing an element of the data (for example, the locations of a pair of
corresponding points); and ���� � ������� � � � � ������

� is a vector with the data trans-
formed in a problem-dependentmanner such that: (i) each component� ���� is a quadratic
form in the compound vector ��� � ��� , (ii) one component is equal to �. A common form
of the ancillary constraint is

���� � �� (2)

where � is a scalar-valued function homogeneous of degree �, i.e. such that

����� � ������ (3)

for every non-zero scalar �. The estimation problem associated with (1) and (2) can be
stated as follows: Given a collection ���� � � � ���� of image data and a meaningful cost
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function that characterises the extent to which any particular � fails to satisfy (1) with
� replaced by �� (� � �� � � � � 	), find � �� � satisfying (2) for which the cost function
attains its minimum. Use of the Gaussian model of errors in data in conjunction with the
principle of maximum likelihood leads to the cost function


��������� � � � ���� �

��
���

������������
��

������������
�������

�
�
�

where, for any length � vector �, ������ denotes the 
��matrix of the partial derivatives
of the function � �� ���� evaluated at �, and, for each � � �� � � � � 	, ���

is a � � �
symmetric covariance matrix describing the uncertainty of the data point � � (see [2, 4,
10]). If 
��� is minimised over those non-zero parameter vectors for which (2) holds,
then the vector at which the minimum of 
��� is attained, the constrained minimiser of

���, defines the approximated maximum likelihood estimate �����. The unconstrained
minimiser of 
��� obtained by ignoring the ancillary constraint and searching over all of
the parameter space defines the weak approximated maximum likelihood estimate, ������.
The function � �� 
��������� � � � ���� is homogeneous of degree zero and the zero
set of � is invariant by multiplication by non-zero scalars, so both ����� and ������ are
determined only up to scale.

Earlier work of the authors [4] presented a method for finding ������. Recently, the
authors proposed a method for calculating ����� [5]. The present paper compares these
and other methods in the case of fundamental matrix estimation. In light of the results
of experiments conducted, the method of constrained minimisation is found to perform
better than other methods in terms of accuracy and speed.

2 Fundamental numerical scheme

The unconstrained minimiser ������ satisfies the variational equation for unconstrained
minimisation

���
��������� � � � ����������
���

� �
� (4)

with ��
��� the row vector of the partial derivatives of 
��� with respect to �. Direct
computation shows that

���
��������� � � � �����
� � ����� (5)

where
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Thus (4) can be written as
����������

���

� �� (6)

An algorithm for numerically solving this equation proposed in [4] exploits the fact that
a vector � satisfies (6) if and only if it falls into the null space of the matrix � �. Thus
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if ���� is a tentative approximate solution, then an improved solution can be obtained
by picking a vector �� from that eigenspace of�����

which most closely approximates
the null space of ��; this eigenspace is, of course, the one corresponding to the eigen-
value closest to zero in absolute value. The fundamental numerical scheme (FNS) im-
plementing this idea is presented in Figure 1. The scheme is seeded with the algebraic
least squares (ALS) estimate, �����, defined as the unconstrained minimiser of the cost
function 
��������� � � � ���� � �����

��
��� �

����� with ��� � �
��

��� �
�
� �
���� The

estimate ����� coincides, up to scale, with an eigenvector of��
����� associated with the

smallest eigenvalue, and this can be found by performing singular-value decomposition
(SVD) of the matrix ������� � � � �������� .

1. Set �� � �����.
2. Assuming ���� is known, compute the matrix� ����

.

3. Compute a normalised eigenvector of � ����
corresponding to the

eigenvalue closest to zero (in absolute value) and take this eigenvec-
tor for ��.

4. If �� is sufficiently close to ����, then terminate the procedure;
otherwise increment � and return to Step 2.

Figure 1: Fundamental numerical scheme.

Different but related schemes for numerically solving equations like (6) were de-
veloped by Leedan and Meer [11] and Matei and Meer [12]. Yet another approach is
Kanatani’s [10, Chap. 9] renormalisation scheme, in which an estimate is sought at which
��
��� is approximately zero (see [3] for details).

3 Constrained fundamental numerical scheme

By design, FNS does not accommodate the ancillary constraint. One way of enforcing this
constraint is to apply some post-hoc correction procedure (see e.g. [10, Chap. 5], [12]).
In general, however, the modified estimates produced in this way will not coincide with
constrained minimisers of the cost function.

An algorithm for determining exact constrained minimisers was proposed in [5]. It is
a variant of FNS, in which�� is replaced by a more complicated matrix. The scheme is
derived starting from the variational equation for constrained minimisation

���
������ 	 ��������������� � �
� �

�������� � ��
(7)

where � is a suitable Lagrange multiplier. When properly combined with the identity
������� � ����� obtained by differentiating (3) with respect to � and evaluating at
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� � �, the system (7) can be rewritten as

������������ � �� (8)

where �� is an 
 � 
 matrix defined as follows. Let 	 � be the 
 � 
 matrix given by

	 � � 
� � ����
�����

�
� �

where 
 � denotes the 
 � 
 identity matrix and �� � ��������
� ��� Denote by �� the

Hessian of 
��� at �, given explicitly by
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 ���
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Let �� be the Hessian of � at �. For each � � ��� � � � � 
�, let �� be the length 
 vector
whose �th entry is unital and all other entries are zero. Now, let
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Unlike ��, the matrix �� is not symmetric. To achieve greater resemblance to (6), it
proves useful to consider the following equivalent form of (8)

���
�
����������� � � (9)

with ��
��� a symmetric matrix. Now, an algorithm fully analogous to FNS can be ad-

vanced by replacing �����
by ��

����
�����

in Figure 1. We call this the constrained
fundamental numerical scheme (CFNS). A necessary condition for CFNS to converge to
a solution �� of (9) is that the smallest (non-negative) eigenvalue of � �

��
��� should be

sufficiently well separated from the remaining eigenvalues. When this condition is sat-
isfied, the algorithm seeded with an estimate close enough to � � will produce updates
quickly converging to ��. Interestingly, many other, often simpler, equivalent forms of
(8) like

�� ���������� � � with � � � ����	 ���	 � 	 
 � �	 �

lead to non-converging algorithms, with divergence occurring irrespective of the distance
of the initial estimate from the desired limit.
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4 Experimental evaluation

In this section, we present results of comparative tests carried out to evaluate the perfor-
mance of CFNS. Several algorithms, including CFNS, were used to compute the funda-
mental matrix from both synthetic and real image data. A single item of data took the
form of a quadruple obtained by concatenating the coordinates of a pair of correspond-
ing points, the role of the principal constraint was played by the epipolar constraint, and
the ancillary constraint was the condition that the determinant of the fundamental matrix
should vanish. The covariances of the data were assumed to be default identity matrices
corresponding to isotropic homogeneous noise in image point measurement.

The basic estimation methods considered were:

	 NALS = Normalised Algebraic Least Squares Method,
	 FNS = Fundamental Numerical Scheme,
	 CFNS = Constrained FNS,
	 GS = Gold Standard Method.

Here, NALS refers to the normalised ALS method of Hartley [8], which takes suitably
transformed data as input to ALS and back-transforms the resulting estimate; GS refers
to the (theoretically optimal) bundle-adjustment, maximum-likelihood method described
by Hartley and Zisserman [9], seeded with the FNS estimate; FNS and CFNS are as de-
scribed earlier. CFNS was applied in the Hartley-normalised data domain. The data nor-
malisation combined with back-transforming of estimates has no theoretical influence on
the constrained minimiser, but in practice significantly improves separation of the smaller
eigenvalues of the matrices��

��� involved. The CFNS algorithm fails to converge when
used with raw data, a phenomenon explained by the lack of sufficient eigenvalue separa-
tion.

When comparing the outputs of algorithms, it is critical that the ancillary constraint
be perfectly satisfied. A convenient way to enforce this constraint is to correct an estimate
of the fundamental matrix via a post-process. Any estimate �� with ��� �	 � � can
be modified to a rank-2 matrix �� 
 with ��� 
�	 � � by minimising the distance � �� ��� 
�	 subject to the condition ��
 �� 
 � �; here � 
 �	 denotes the Frobenius norm. The
minimiser can easily be found by performing a SVD of �� , setting the smallest singular
value to zero and recomposing. For the estimate generated by FNS, a more sophisticated,
Kanatani-like (cf. [10, Chap. 5]) correction can be obtained by means of the iterative
process

���� � �� � ���������
�

��
���������

� ���������
�

��
���������

� � (10)

where��

��
denotes the pseudo-inverse of� ��

.
Our computed estimates were usually post-hoc rank-2 corrected. In the case of the

NALS method, SVD correction preceded the final back-transformation of estimates. In
the following, we use the notation “+” to denote a post-process SVD correction, and
“++” to denote an iterative correction (see (10)) followed by SVD correction. Thus, the
composition of FNS and SVD correction is denoted by FNS+. Of the various methods
listed here, only SVD correction is guaranteed to generate a perfectly rank-2 estimate,
although CFNS, GS and the iterative correction usually get extremely close.
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��� ���

FNS ����� ����� ����	

FNS+ ���
� �
CFNS ����� ����� ����


CFNS+ ����� �

Table 1: 
��� and ��� values for FNS and CFNS before and after SVD rank-2 correction.

4.1 Synthetic image tests

Synthetic tests are valuable in comparative trials as we have ground truth available, and
we may employ repeated trials yielding results of statistical significance.

The regime adopted was to generate true corresponding points for some stereo con-
figuration and collect performance statistics over many trials in which random Gaussian
perturbations were made to the image points. Many configurations were investigated and
the results below are typical. Specifically, we conducted experiments by first choosing
a realistic geometric configuration for the cameras. Next, �� 3D points were randomly
selected in the field of view of both cameras, and were then projected onto ��� � ���
pixel images to provide “true” matches. For each of ��� iterations, homogeneous Gaus-
sian noise with standard deviation of ��� pixels was added to each image point and the
contaminated pairs were used as input to the various algorithms.

Table 1 examines the FNS and CFNS methods in terms of the cost function, 
���,
and the ancillary constraint residual, ���. The values displayed are the averages of in-
dividual values obtained in all 200 trials. As is to be expected, and consistent with its
design, FNS generates the smallest value of 
���, but leaves a non-zero ancillary con-
straint value, ���. CFNS reduces the value of ��� almost to zero and (necessarily) incurs a
small increase in 
���. Note that an SVD correction (which ensures � � �) of the FNS
estimate results in an associated 
��� value that is substantially increased. In contrast,
SVD correction of the CFNS estimate leaves the 
��� value virtually unaffected, and
much smaller than the corrected FNS estimate. This test, which is typical, confirms that
CFNS is operating as designed.

Table 2 compares the 
��� values generated by the methods NALS+, FNS+, FNS++,
CFNS+, and GS+. Note that all of the methods undergo a final SVD rank-2 correction
ensuring that the ancillary constraint is perfectly satisfied. Were we to avoid this step (in,
say, the CFNS and GS approaches) it might be unclear whether a low 
��� value was
due to the constraint not having been fully satisfied.

The results show that, with respect to 
���, GS+ and CFNS+ perform best and
equally well, with FNS++ only a little behind; FNS+ and NALS+ are set further back.
The same ordering occurs when using a measure in which the estimated fundamental ma-
trix is employed to reproject the data and compute the distance of the data from the truth.
This reprojection-error from truth may be regarded as an optimal measure in the synthetic
realm.

Finally, a timing test is also presented in Table 2. Here we give the average time over
100 trials to compute NALS, FNS, CFNS, and GS. Unsurprisingly, GS turns out to be
by far the slowest of the methods. While it may be speeded up via the incorporation of
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��� Reproj. error Time

NALS+ ����� ����� ����
FNS+ ���
� ����� ����
FNS++ ���
� ����� ����
CFNS+ ����� ����� ����
GS+ ����� ����� ����

Table 2: 
��� residuals, reprojection errors and execution times for rank-2 estimates.

Figure 2: The building and soccer ball stereo image pairs.

sparse-matrix techniques, it is destined to be relatively slow given the high-dimensionality
of its search strategy.

CFNS thus emerges as an excellent means of estimating the fundamental matrix. Its
performance is commensurate with GS while being much faster. FNS++ is only a little
short of CFNS in speed and accuracy. However, it does not have the advantage of being
an integrated method of constrained minimisation.

4.2 Real image tests

The image pairs from which we estimate fundamental matrices are presented in Figure 2.
They exhibit variation in subject matter, and in the camera set-up used for acquisition.
Features were detected in each image using the Harris corner detector [7]. A set of cor-
responding points was generated for each image pair by manually matching the detected
features. The number of matched points was 

 for the building, and �� for the soccer
ball. For each estimation method, the entire set of matched points was used to compute a
fundamental matrix.

Each estimator was used to generate a fundamentalmatrix. Tables 3 and 4 show results
obtained for various methods when dealing with the soccer-ball and building images,
respectively. Measures used for comparison are 
��� and the reprojection error to data
(the distance between the reprojected data and the original data). Note that the ancillary
constraint is in all cases perfectly satisfied. CFNS+ and GS+ give the best results and
are essentially inseparable, while FNS++ is only slightly behind. FNS+ and NALS+ lag
much further behind.
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��� Reproj. error (to data)

NALS+ ����� ������
FNS+ ����� ������
FNS++ ��

� ������
CFNS+ ��

� ������
GS+ ��

� ������

Table 3: 
��� residuals and reprojection errors for rank-2 estimates - soccer ball images.


��� Reproj. error (to data)

NALS+ ���� �����
FNS+ 
��� �����
FNS++ ���� �����
CFNS+ ���� �����
GS+ ���� �����

Table 4: 
��� residuals and reprojection errors for rank-2 estimates - building images.

5 Conclusion

We presented a short experimental study to evaluate the performance of a newly designed
constrained estimator, CFNS. Our study indicates that CFNS produces estimates satis-
fying the imposed constraint, with values of the underlying cost function no greater than
those generated by other methods. CFNS generates results of similar accuracy to those
generated by the Gold StandardMethod, but in a fraction of the time. Furthermore, CFNS
has the advantages over FNS++ of being a genuinely integrated scheme for constrained
minimisation, and producing slightly more accurate results.
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