
Detecting man-made objects in
unconstrained subsea videos

Adriana Olmos and Emanuele Trucco
Department of Computer and Electrical Engineering

Heriot Watt University
Riccarton EH14 4AS Edinburgh, Scotland, UK

{ceeao, mtc}@cee.hw.ac.uk

Abstract

We present a system detecting the presence of unconstrained man-made ob-
jects in unconstrained subsea videos. Classification is based on contours,
which are reasonably stable features in underwater imagery. First, the system
determines automatically an optimal scale for contour extraction by optimis-
ing a quality metric. Second, a two-feature Bayesian classifier determines
whether the image contains man-made objects. The features used capture
general properties of man-made structures using measures inspired by per-
ceptual organisation. The system classified correctly approximately 85% of
1390 test images from five different underwater videos, in spite of the varying
image contents, poor quality and generality of the classification task.

1 Introduction

Motivation. Video cameras are standard equipment for underwater remotely operated
and autonomous unmanned vehicles (ROVs, AUVs) used in scientific and industrial mis-
sions at sea, many of which aim at or rely on the detection of man-made objects. This
often tedious task is typically carried out manually. In scientific missions, for example,
video data is recorded nearly non-stop by the ROV cameras, so that a single day of op-
eration can generate many hours of video. Most of this material is uninteresting as it
contains no targets whatsoever, and editing the videos manually is an unwelcome but cur-
rently necessary job for the scientist in the aftermath of missions. In another example
scenario, AUVs or ROVs must locate benthic installations for inspection or intervention
purposes. Approaching the target’s area can be accomplished by geo-referenced naviga-
tion systems, but close-range confirmation of the presence of the target, as well as control
of the final approach, depend on video data. For ROVs, these are constantly monitored by
the vehicle’s pilot, but AUVs need autonomous video detection capabilities.

There is therefore a need for automatic vision systems capable of detecting a variety
of man-made objects, in a variety of underwater imaging conditions (natural or artificial
illumination, target nature, turbidity, disturbances, and so on). In some applications, in
particular, a good but not extremely high rate of correct detections, say 75% or better,
is acceptable as long as misses (false negatives) are practically zero. For example, a
false negative in mine-like object detection (ignoring a real mine-like object) is much
more dangerous than a false alarm; in post-mission tape analysis, scientists would prefer
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a selection of sequences including some uninteresting objects than one missing several,
potential interesting targets.

The system proposed. We present a system detecting the presence of unconstrained
man-made objects in unconstrained subsea videos. Classification is based on contours,
which are reasonably stable features in underwater imagery. First, the system determines
automatically an optimal scale for contour extraction by optimising a quality metric. Sec-
ond, a two-feature Bayesian classifier determines whether the image contains man-made
objects. The features used capture general properties of man-made structures using mea-
sures inspired by perceptual organisation. The system classified correctly approximately
85% of 1390 test images from five different underwater videos, in spite of the varying
image contents, poor quality and generality of the classification task.

Related work. Much research has been devoted to the detection and recognition
of specific objects in natural environments [17, 14, 3]. Natural scene analysis is not an
easy problem at all; natural objects viewed under realistic conditions do not have uniform
shapes which can be matched against stored prototypes. According to [1] the strategies
developed to approach this problem can be divided in three groups: bottom-up, top-down
or hybrid. Top-down approaches start with the hypothesis that an image contains a partic-
ular object or can be categorised as a particular type of scene. This kind of systems carry
out specific tasks: a typical system like this applies specialised segmentation and recogni-
tion methods to each object [17, 3, 8]. These systems are broadly used when specific kind
of object must to be found (lane detection, building detection, traffic and sign recognition,
military targets), and not when the whole scene must be segmented and classified. In a
bottom-up system a scene is partitioned into regions by using general purpose segmenta-
tion techniques. These regions are then characterised by linking the objects to each other.
The consequent labelling process requires an inference engine to match each region to the
best object model [10, 12]. The hybrid approaches are generally characterised by the use
of general segmentation methods and specific procedures for labelling purposes, reaping
most of the advantages of top-down, bottom-up or variants of the mentioned approaches
[20, 6]. In subsea image processing, most of the work reported focuses on the detection of
specific targets in sonar images [19, 4] and, to a smaller extent, on seafloor pipes in video
images [5, 21]. In all these cases targets are well-defined a priori and detailed models can
be formulated.

Detecting the presence of generic man-made objects in a natural, unconstrained en-
vironment is a more difficult and, to our best knowledge, open problem, exacerbated
underwater by frequent clutter in the seafloor background, occlusions (e.g., only part of
the target may be imaged), and the generally low image quality caused by backscattering,
absorption and attenuation of the light [9]. The key limitation is that no specific models
can be formulated, as no specific targets are known. One must therefore turn to general
properties of the images of man-made objects, at the price of a reduced selectivity and
therefore accuracy of recognition (obviously, specific models support more accurate re-
sults). Selectivity can however be improved by perceptual grouping [11, 7, 14], which
can assist with the selection of candidate areas most likely to contain targets. These ideas
are at the basis of our work.

Paper structure.
This paper is organised as follows. Section 2 introduces the main design choices and ar-
chitecture adopted. Sections 3.1 and 3.2 describe, respectively, the optimal scale selection
for contour extraction and the contour-based classification algorithms. Section 4 reports
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the results of our tests with footage from five different videos acquired in ocean waters
and in a laboratory tank, in a variety of imaging conditions. Section 5 summarises and
discusses our work.

2 Design choices

The key design issues concern the choice of suitable image features, the choice of general,
detectable properties of man-made objects, and the selection of the optimal spatial scale
for analysis.

Image features. What features can support the general classification we aim to
achieve? Underwater image formation [9, 13] makes texture and colour unsuitable as
both disappear rapidly with stand-off distance. Contours, however, are reasonably pre-
served over a useful range of distances and imaging conditions. This choice is adopted
also in other work on detecting man-made objects [7, 14].

Properties of man-made contours. What general properties can be expected of man-
made object contours subsea? We use contour length, as long contours suggest the pres-
ence of a man-made structure; subsea objects tend to generate a multitude of short con-
tours; contour number, as many short contours occur usually in natural images, whereas
few, long contours in man-made environments; contour curvature, as underwater man-
made objects contain mostly smooth, simple shapes, generating smooth curves and simple
lines in images, whereas natural scenes abound in tortuous and jagged contours.

It is important to stress that these criteria do not constitute a specific, highly selective
model, but a set of plausible guidelines for the detection of general man-made artifacts
underwater.

Optimal spatial scale. The spatial scale at which the above criteria can be applied
must be chosen with care. Excessively coarse scales may miss short but suggestive con-
tours; excessively fine scales generate strong clutter, camouflaging target contours. In
addition, submerged structures may be covered by algae or similar marine growth, which
may camouflage the structure itself to various degrees. Instead of looking at contour
length, we select an optimal scale by maximising an image quality criterion, in order to
ensure that reliable contours are detected.

Yes

Optimal scale selection Contour based classification

ClassificationFeature extraction

Image Edge extraction

Optimal
scale?

No

Figure 1: The two-module system architecture.
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3 System description

The system is organised in two sequential modules (Figure 1): optimal scale selection
for contour extraction and contour-based image classification. The former selects the
scale at which contours must be extracted by optimising a uniformity metric (explained
below) over the scale-space generated by the input image. The latter applies a two-feature
Bayesian classifier to the contours at the selected scale in order to determine whether
man-made objects are present. The two modules are detailed in the following sections.

3.1 Optimal scale estimation for contour extraction

Following the approach of [18, 16] we define the optimal scale as the one maximising a
contour localisation criterion based on the uniformity of the intensities on both sides of
the contour. The idea is that high uniformity on both sides is an indicator (not the only
one, of course) of good localisation. Contrast is not considered in order to capture weak
and strong edges alike. The uniformity criterion for a contour, U , is the average of the
uniformities on both sides of the contour, Ul and Ur (subscripts for left and right), which
are computed as shown below in regions obtained by sliding 3 × 3 windows along the
contour:

U =
1
2
(Ul + Ur), (1)

Ur = 1 − σ2
r

N
, (2)

where σr is the standard deviation of the intensities in R, and

N =
(Imax − Imin)2

2
. (3)

Ul is computed analogously. U varies from 0 (badly localised contour) to 1 (perfectly
localised boundary). (The reason of choosing a 3 × 3 window for computing the unifor-
mity criterion is because a bigger window would miss small contours and influence the
selection for a larger scale). Edges are extracted using a Canny edge detector [2].

3.2 Classification

Once an optimal scale has been selected for contour extraction, contour-based features
must be used to classify the original image as containing man-made objects or not. We
achieved good performance with a standard Bayesian classifier (quadratic decision sur-
face). We set the prior probabilities of the two classes to 0.1 for man-made and 0.9 for
natural objects. These values are based on realistic, common expectations in real AUV
missions. We noticed also that the sensitivity of the classification results to variations of
these priors is limited, although we do not have performed a quantitative analysis yet.

It is difficult to capture good features supporting such a general classification task.
The classifier uses two features, ML and MI , respectively defined in terms of contour
length and contour interest. In particular, ML is the average (normalised) contour length:

ML =
1

NΓI

NΓI∑

i=1

L(Γi)
LΓmax

, (4)
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original image σ = 1, U1 = 0.6936 σ = 2, U2 = 0.7623

σ = 3, U3 = 0.7558 σ = 4, U4 = 0.7782 σ =5, U5 = 0.8200

σ = 6, U6 = 0.8092 σ = 7, U7 = 0.7953 σ = 8, U8 = 0.7965

Figure 2: The result of edge detection at different scales computing the localisation measure. The
scale selected is = 5. The edge-map selected and the scale are showed with bold letters.

where NΓI
is the total number of image contours found, L(Γi) is the length of the i-th

contour, and LΓmax is the length of the longest contour found. This feature tends to select
images containing uniformly long contours.

The feature MI is the average interest of the contours in a set composed of the NΓJ

longest contours in the image (in our experiments NΓJ
is typically 5):

MI =
1

NΓJ

NΓJ∑

j=1

I(Γj), (5)

where NΓJ
is the number of contours of interest analysed and I(Γj) is the interest of the

j-th contour. I(Γj) is defined as the product of two interest measures: Ir(Γj), based on
contour regularity, and Ip(Γj), based on contour proximity.

I(Γj) = Ir(Γj) × Ip(Γj) (6)

Interest due to regularity1. A regular contour is smooth and geometrically simple, as
contours of subsea man-made structures often are. We capture this idea of regularity with
two measures. First, the number of curvature zero crossings: for a fixed length, a small
number of curvature zero crossings along the contour suggests a simple, regular contour;
a high number, a tortuous, intricate, frequently turning contour. Second, persistence in
scale space: scanning the curvature scale space [15] of a given set of contours from fine

1Notice that we use regular and smooth only suggestively, not in their precise geometric meaning.
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to coarse scales, simple contours will achieve a small number of zero crossings rapidly
(low persistence), complex contours later (high persistence). Combining these two ideas,
we define the interest due to regularity, Ir(Γj), for the j-th contour as follows:

Ir(Γj) = exp−Zc×Sn
L . (7)

where Sn its the maximum number of scales used in the computation of the curvature
scale space, the scale is selected automatically when the number of zero crossings repeats
twice before converging into a convex contour and the zero crossings disappear, Zc is the
number of curvature zero crossings of the contour Γj at the curvature scale selected, and
L is the length of the segment.

Interest due to proximity. Some underwater natural events, such as sand ripples,
generate long, simple image contours. If the classifier were based only on regularity only,
such events would trigger false alarms. We add therefore a proximity measure. The idea is
that contours of man-made structures, in addition to being long and simple over a range of
spatial scales, would also appear close together in an image region, whereas natural events
like sand ripples tend to be distributed over the whole image. Therefore the interest due to
proximity of the j-th contour, Ip(Γj), decreases with the distance from any neighbouring
contours, and is penalised by the normalised distance from contours of interest:

Ip(Γj) =
N∏

n=1

exp− dn
Lmax −

K∑

k=1

dk

Lmax
(8)

where N is the number of the contour neighbours of Γj ; dn is the distance from the
contour of interest Γj to the nth neighbour; Lmax is the length of the image diagonal; K
is the number of neighbouring contours of interest; dk is the distance between Γj and the
k-th neighbouring contour of interest.

Distances between contours are computed as distances between contours’ centroids.
Two contours are neighbours if they are adjacent in a top to bottom, left to right scanning
order.

4 Experimental results

Five real videos were used in our experiments, two for training and three for testing. The
training videos are records of shallow-water AUV operations run by Florida Atlantic Uni-
versity (FAU), covering a variety of conditions. We selected manually 322 frames from
the training videos, as representative cases, of which 161 containing man-made objects
and 161 natural subsea objects only. The test set was taken from one video acquired in
our instrumented tank and two further AUV videos supplied by FAU, taken under turbid
water conditions in Fort-Lauderdale, Florida and Camp Pendleton, San Diego. The test-
ing set in total consisted of 1390 frames. All images were pre-processed using our own
physics-based restoration algorithm. The system is implemented in Matlab.

In summary, 85% of the test images containing man-made objects and 71% of those
containing only seafloor and natural objects were classified correctly. These percentages
must be considered in the light of the generally poor image quality of subsea imagery and
the generality of the classification task.
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Figure 4 shows, for a number of examples, the input frame, the edge map at the
selected optimal scale, the same superimposed with the input frame, and the contours of
interest selected. Our particular combination of interest criteria proves effective: notice
for instance the correct classification of natural scenes in spite of long contours (case
B and D), of a man-made target in spite of very poor image quality (case C) or small
size (case E). Case F is an example of wrong result, probably due to the scattering of
interesting segments across the image.
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Figure 3: Results from detection of man-made objects in the testing videos.

Figure 3 presents the classification results with different classification-thresholds as a
Receiver Operating Characteristic curve (ROC), a compact visualisation of the trade-off
between the portions of false positives (1-specificity) and of true positives (sensitivity).
The sensitivity, Se, is the proportion of correctly classified frames containing man-made
targets; the specificity, Sp, is the proportion of correctly classified frames containing non-
man-made objects:

Se =
TP

TP + FN
(9)

Sp =
TN

TN + FP
(10)

TP is the number of true positives, or correctly classified frames containing man-
made targets, and FP of false positives, or frames incorrectly classified as containing
man-made objects. Similarly, FN is the number of false negatives, and TN the number
of true negatives. The closer the ROC curve follows the left-hand border and then the top
border of the ROC space, the more accurate the classification. The closer the curve comes
to the 45-degree diagonal of the ROC space, the less accurate the classification. In these
terms an accurate classification of man-made objects is observed in figure (3) for the test
videos.
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A) Frame with: Man-made object B) Frame with: Natural objects
Classification: Man-made (true) Classification: Natural (true)

C) Frame with: Man-made object D) Frame with: Natural objects
Classification: Man-made (true) Classification: Natural (true)

E) Frame with: Man-made object F) Frame with: Man-made object
Classification: Man-made (true) Classification: Natural (false)

Figure 4: Matlab output of the integration of the whole system. Man-made and not man-made
objects found within the images. (A) Image from the OSL tank video, (B) image from Morpheus
video, images (B), (E) (D), (F) from FAU video. Original images (B) to (F) courtesy of Florida
Atlantic University.
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5 Conclusions

We have presented a system detecting the presence of unconstrained man-made objects in
unconstrained subsea videos. The generality of the problem, compounded by the varying
quality of subsea imagery, is tackled with a combination of optimal scale selection and
classification features inspired by perceptual organisation. The system classified correctly
approximately 85% of a 1390 test images from five different underwater videos, in spite
of the varying image contents, poor quality and generality of the classification task.

A reliable classifier of man-made targets would cut substantially post-mission analysis
time. Real-time versions could assist AUVs with the location of man-made targets in
intervention missions, e.g., on pipeline-work or scientific installations. Notice that a few
seconds per frame would be an acceptable frame rate in several, low-speed operations.

Finally, the system can be regarded as a tool for general video editing, and we plan to
investigate applications beyond the subsea domain. We also intend to take advantage of
time correlation between frames.
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