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Abstract

We describe a general algorithm for identifying an arbitrary pose of an articu-
lated subject with low density feature points. The algorithm aims to establish
a one-to-one correspondence between two data point-sets, one representing
the model of an observed subject and the other representing the pose taken
from freeform motion of the subject. We avoid common assumptions such
as pose similarity or small motion with respect to the model, and assume
no prior knowledge from which to infer an initial or partial correspondence
between the two point-sets. The algorithm integrates local segment-based
correspondences under a set of affine transformations, and a global hierar-
chical search strategy. Experimental results, based on synthetic pose and
real-world human motion capture data demonstrate the ability of the algo-
rithm to perform the identification task. Reliability is compromised as noisy
data and limited segmental distortion are increased, but the algorithm can
tolerate moderate levels. This work therefore contributes to establishing an
initial correspondence in point-feature tracking for articulated motion.

1 Introduction

Identification of an articulated pose arises naturally from object tracking and recogni-
tion [1]. The articulated motion we are considering describes segment-based jointed mo-
tion, such as occurs in vertebrate biological motion. The motion of each segment can be
considered as rigid or nearly rigid, but the whole motion is high-dimensionally non-rigid.
Investigations of articulated movements have been a growing interest in the past decade,
motivated by potential applications such as human-computer interfaces, biomedical stud-
ies, the entertainment industries and robotics.

When an articulated motion is represented by a sequence of feature points, the spatio-
temporal information of the articulated motion is reduced to a sequence of moving points
over time. Of the fundamental tasks in point-feature tracking systems, such as fea-
ture detection, 3D reconstruction and inter-frame tracking have been investigated exten-
sively [5, 15, 6, 7, 14]. However identification, to know which point in an observed data
corresponds to which point in its model, still remains an open problem, especially at the
start or recommencement of tracking. Currently, most tracking approaches deal with in-
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cremental pose estimation relying on manual initialization, or on an assumption of initial
pose similarity to the model, or knowledge related to a specific motion.

We concentrate on the identification task to address the problem of self-initialization
in 3D point-feature tracking systems. Therefore, our algorithm assumes availability of 3D
feature point data, such as obtained by stereo-vision techniques or other sensors. We use
a model-based point pattern matching approach.

Point pattern matching (PPM) is a fundamental yet still open problem in computer
graphics, computer vision and pattern recognition [8, 11, 10, 4, 3, 18], more often re-
stricted to rigid, affine and projective point matching. Rangarajan et al.[12] described a
method of non-rigid point matching to register two contours composed of dense point
sets. They approximate articulation by simultaneously determining a set of matches
and piecewise-affine transformations. Song et al. [16] addressed the problem of a self-
initializing tracker based on a probabilistic modeling of human walking motion from
training data in images. Commercial marker-based optical motion capture (MoCap) sys-
tems [13] are currently used in medical studies, sports analysis and animation etc. They
may fail in the task of identification at times, requiring manual post-processing before the
data are useable in actual applications. Systems generally fall short of dealing with real-
world situations, such as: i) articulated one-to-one matches in the presence of missing
(due to occlusion) and noisy data (arising from measurement), ii) distortion of non-rigid
segments, iii) complete independence on initial location and pose.

In this paper, we present a segment-based articulated point matching (SAPM) algo-
rithm to automatically identify an arbitrary pose from 3D low density feature points, rather
than dense point features on a curve, contour or surface [3, 18, 12]. In our experiments, a
segment-based skeletal model of an observed subject is manually generated off-line using
one frame of pose data that includes full feature points. Feature points are located not
only on joints between articulated segments [6, 16, 14], but must be sufficient in number
to indicate detailed structure and orientation, e.g. as shown in Fig.2 and 4. The observed
pose data are taken from one frame of noisy feature-point pose data during the subject’s
freeform movements. The identification task is to find the precise one-to-one matches
between the points in the subject model and the points in its observed pose data. We
successfully address this problem in real-world situations with occlusion, noisy data and
limited distortion in each segment. The proposed algorithm contributes to articulated pose
estimation for self-initializing three dimensional point-feature tracking systems. It aims
at complete independence of manual intervention for identifying unexpected and arbitrary
poses, either at the beginning or on resumption of tracking.

2 Problem statement and formulation of the objective

When we use 3D sparse points as features to locate and represent an articulated motion,
the geometrical structure of the articulated subject is modeled by a high-degree-freedom
skeleton with a set of rigid segments between articulated joints, e.g. as shown in Fig.2
(left). To keep the articulated model general, we allow each segment of the articulated
subject to undergo a set of independent affine transformations within the constraint of a
jointed skeleton, and furthermore allow limited distortion in “rigid ” segments. We do not
impose range of motion constraints such as feasible biological motion.

More formally, we state the matching problem as: within the spaceΩ ∈ {<3}, given
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are two point-sets. One is the model. This model consists of a set of identified feature
points described by their 3D coordinatesps,i ∈ Ω, their labelsLs,i, and their grouping
into a set ofS segments:P = {Ps|Ps = {(ps,i, Ls,i), i = 1, ...Ms}, s = 1, ...S}, each
segment havingMs model points. The other is the observed setQ = {qi| qi ∈ Ω, i =
1, 2, ...N} of N unidentified points in a randomly sampled frame of the modeled subject
during its movements.

The SAPM algorithm includes two steps: firstly, to establish a best local segment-
based one-to-one correspondences by looking for a set of affine transformations that in-
terpret segmental movements; and secondly, to apply a global hierarchical search strategy.

To define a set of best local correspondences between the two point-sets, we utilize
two criteria: matching qualitȳe and matching sizeΘ. For matching quality, we require
that the mean matching errorēs of prototype segmentPs(ps,i) and its assumed match
Qs(qs,i) be less than the tolerable segmental-distortionε in Eq.2, under an affine transfor-
mation[Rs, Ts] (Rs for rotation andTs for translation) defined by minimizing objective
function in Eq.1.

[Rs, Ts] = arg min
Rs,Ts

Ms∑
i=1

rs,i × ||qs,i −Rsps,i − Ts||
∑Ms

i=1 rs,i

(1)

ēs =

Ms∑
i=1

rs,i × ||qs,i −Rsps,i − Ts||

l̄s ×
∑Ms

i=1 rs,i

< ε (2)

For the matching size conditionΘs, we require that subsetQs have at leastβ × Ms

(β ∈ [0, 1]) non-null matches ( Eq.3).

Θs =
Ns∑

i=1

rs,i > β ×Ms (3)

When both conditions are satisfied, we regard(Ps(ps,i), Qs(qs,i)) as the best segmental
correspondence. In equations Eq.1- 3 above, the norm||qs,i − Rsps,i − Ts|| denotes
the Euclidean distance between matching pointqs,i and its transformed modelps,i, and
l̄s =

∑
i,j

d(ps,i, ps,j) denotes the average segmental length. We indicate a non-null match

(qs,i, ps,i) by rs,i = 1, otherwise we setrs,i to 0.
Global articulated matching is achieved by integrating local segment-based matching

with a hierarchical search strategy (section 3.2).

3 Algorithm

3.1 Local segment-based matching

Articulated motion maintains geometric invariance in the “rigid” segments. Local match-
ing is therefore possible at the segment level. The algorithm generates candidate tables
(CTs) of matching points to a given segments. A relaxed criterion is used since “rigid”
segments are allowed some degree of distortion. The tables are then prioritized for itera-
tive matching.
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3.1.1 Candidate-tables generation

If no point has been identified for an unmatched segmentPs, we arbitrarily choose a pivot
ps,l ∈ Ps and order the remainingps,i ∈ Ps by non-decreasing distance from the pivot
to define an ordered pivotal sequence for segmentPs. Then choose a match candidate
qk from the unidentified observed pointsQM for the pivotps,l, and generate a column of
match candidatesqj for each non-pivotal elementps,i of the pivotal sequence, according
to Eq.4, whered(ps,l, ps,i) denotes Euclidean distance.

|d(ps,l, ps,i)− d(qk, qj)|
d(ps,l, ps,i)

< 2ε; qj ∈ QM (4)

The resulting array is a candidate table CT for segmentPs, that depends on the choice of
pivot ps,l and on the assumed pivot matchqk.

For any non-pivotal elementps,i, we may find several candidates on account of the
relaxed inter-point distance criterion, or only a null-candidate, possibly due to occlusion
or distortion above the thresholdε or wrongly assumed pivot match. For searching effi-
ciency, the column of non-null candidates for a givenps,i is ordered by increasing value
of the distance ratio in Eq.4, thereby moving the best candidates towards the column head.

In this way, each pointqk ∈ QM obtains a CT, but at most one of the tables (since the
match point ofps,l may be lost) includes a correct match of segmentPs. With high proba-
bility, the CT with the correct match contains more candidates than other CTs. Therefore,
to economize the search procedure, we discard some CTs with low numbers of candidates,
and arrange priority of the rest according to the number of the candidates included.

If a join point in the segmentPs has already been identified during its parent-segment
identification, reasonably this join point is used as the only pivot. In this case, only one
CT is generated. This implies a large reduction of the search space.

3.1.2 CTs-based iterative matching

The CTs contain a number of candidates for eachps,i. They effectively restrict the search
space and make unnecessary the assumption of small motion or pose similarity required
between two point-sets in the Iterative Closest Point (ICP) algorithm [3, 18]. In order to
detect a correct match of segmentPs, we choose a CT in priority order and take the most
reasonable candidates,q′s,i ∈ Q′s say, to be an assumed correspondence with the pivotal
sequence. If the set size|Q′s| ≥ 3, calculate the affine transformation[R′s, T

′
s] by the

SVD-based motion estimate algorithm [2, 9] related to this assumed correspondence. If
the obtained motion estimation satisfies Eq.2, thenQ′s is regarded as a partial match ofPs.
Otherwise,Q′s has spurious matches and must be updated from the CT iteratively to carry
out motion estimation until a partial match has been found. Next, confirm whether the
partial match can be improved to give a whole best matchQs which satisfies Eq.3 as well.
This is implemented by using the closest-neighbor method to reassign a correspondence
between the transformed model pointsp′s,i under[R′s, T ′s], andQM in Eq.5. This iterative
procedure is applied to prioritized CTs until a whole best matchQs of Ps is found if
it exists. The identified points will be taken out ofQM to remove them from further
consideration. If no best match can be found, the segment search has failed. This results
in some ambiguities for child-segment identification or may hint a wrong parent-segment
identification, considered during the global hierarchical search procedure (see 3.2). We
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summarize the CTs-based iterative matching procedure in Fig. 1, where|Q′
s| denotes the

number of non-null points inQ′
s.

Input : prototypePs and unidentifiedQM .
Loop L : for l =1 to(1− β)Ms: assign a pivotps,l

Step1: Candidate-tables generation (3.1.1)
Create an non-decreasing distance pivotal sequence;
Find candidates (Eq.4) and generate CTs;
Discard tables with fewest candidates;
Arrange priority of remainders (biggest first);
Sort candidates columns of each CT (best first).

Step2: CTs-based iterative point matching (3.1.2)
Loop A: input a CT. Do A until the last CT:

Initialize Q′s;
Loop B: Finding partial match Q′s: Do B while |Q′s| ≥ 3

UpdateQ′s from CT;
Calculate motion by SVD-based algorithm;
if ēs < ε (Eq.2)

C: Finding a whole best matchQs:
Find closest neighbors (Eq.5);
Update matchQ′s;
Calculate motion;
if ēs < ε and|Q′s| > βMs (Eq.2,Eq.3)

Qs ⇐ Q′s as the best match ofPs;
Remove the identified points fromQM ;
Return: segment match success.

End Loop B
End Loop A

End loop L: select another pivotps,l in Ps.
Return: segment match failure.

Figure 1: CTs-based iterative matching

To updateQ′
s from a CT in Fig.1, two methods are used. For a segment with more

than a few points (e.g. our threshold is 6 for non-rigid human segments), we use the first
candidate of eachps,i in the CT as initial match of the pivotal sequence to calculate an
approximate transformation[R′s, T

′
s]. If this correspondence includes spurious pairs, the

average matching error would not satisfy Eq.2. We update the initial match by replacing
the worst match with its next candidate in the CT, based on the cue that matching errors
of spurious pairs are higher than those of the correct pairs. This “coarse” update approach
can quickly investigate the prioritized sequences of CTs to locate a CT satisfying a local
match. This method has proved efficient for identifying the first segment, which has a
large number of CTs to be investigated.

For a segment of only a few points or of poor rigidity, the above cue becomes unre-
liable, because the matching errors distribute more evenly so as to hide outliers. In this
case we recourse to a nearest-furthest-to-pivot sequential search, which forms the second
method. Each iteration uses only three points for the assumed partial match. The idea for
choosing the pivot’s nearest and furthest neighbors is that such points in a segment have
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less ambiguity to distinguish them from others with intermediate distances [17].
To achieve a whole segmental match, the algorithm must find the remaining matches.

Searching the wider setQM rather than the CT elements allows recovery even when a
correct match has been dropped during the iteration or was not included in the CT because
selection by2ε in Eq.4 was strict, on grounds of limiting the CT search space. We apply
the obtained motion estimate[R′s, T ′s] to all the model points inPs: p′s,i = R′sps,i + T ′s,
and find the closest-neighbor match(p′s,i, qs,i), qs,i ∈ QM , defined by Eq.5.

(p′s,i, qs,i) = min
qi∈QM

d(p′s,i, qi) < 2l̄sε (5)

If no such closest neighbor is found, we say the match point ofps,i is lost, and set
rs,i = 0.

3.2 Global hierarchical search strategy

Global articulated matching is achieved by integrating local segment-based matching with
a hierarchical search strategy. In the segment-based articulated model, we assume that one
of its segments contains more points and has more segments linked to it than most other
segments. We treat such a segment as root. The global hierarchical search strategy begins
at the root. After the root has been located, searching proceeds depth first to children
along hierarchical chains. In this process, a joint may have been located in parent-segment
identification, therefore it can be used as a known pivot in the child-segment. This linkage
considerably increases the reliability and efficiency of the child-segment identification.
In the case of a missing joint, an identified parent-segment of at least three points allows
the motion transformation to recover a corresponding virtual joint, ensuring that child-
segment identification can still proceed reliably.

When a segment has only few points, such as a point-pair model segment or a pose
segment with enough missing points, local identification may be non-unique. In order to
solve these kinds of uncertainties, we confirm such a segment in the hierarchical chain
depending on whether its child-segment, even its grandchild-segment, can be found.

Failure to identify a child-segment may imply a wrong parent-segment identification.
In this case, the algorithm attempts a backward error correction to the parent-segment.
When a search chain in the hierarchy is broken by a failed segment identification, global
searching will tend to identify other segments on other chains first and leave any remain-
ing child-segments on broken chains the last to be solved.

4 Experimental Results

We have implemented the proposed SAPM algorithm in Matlab and applied it to both syn-
thetic pose data and a real-world registration of human movement in 3D Moving Light
Displays (MLDs). In our experiments, all model data and motion data are acquired from
a marker-based optical MoCap Vicon 512 system. It includes 7 high-resolution calibrated
cameras. The system can reconstruct the three-dimensional coordinates of an infrared
retro-reflective marker if the marker is located in at least two camera views. The mea-
surement accuracy of this system is at a level of a few millimetres in a control volume
spanning meteors in linear extent.

683



4.1 Synthetic data

A number of model patterns have been investigated in our experiments. An example of
a human model is shown in Fig.2, left. This model has 13 segments and 44 points in
total; each segment contains up to 6 points, with the root segment (torso) having the most
number. Segment-based matching started at the torso and spread to all the child-segments,
such as head, pelvis, left/right arms and legs, on hierarchical chains.

In the first series of experiments, we study the ability of the proposed algorithm to
identify arbitrary noise-free poses. To obtain such pose data, we apply a common random
translation to all points in the model, then apply to each segment a random 3D-rotation
around its joint. We attempt to identify the resulting synthetic configurations with the
SAPM algorithm. Tests with about 2000 such synthetic poses show that correct identifi-
cation occurs in about95% of the cases. We show a typical case in Fig.2, in which each
pair of identified feature points in the same segment is shown by stick links. We found
the proposed SAPM algorithm works well without any similarity assumption on position
and pose between the model and its observed data.

Figure 2: Identification with synthetic pose data: model (left), unidentified pose data
(middle), identified pose (right).

The second series of experiments were carried out with segmental distortion applied to
the configurations. For each point in a segmentPs, we added zero-mean Gaussian noise
N(0, ψl̄s)/

√
6, with a standard deviation scaled by distortion levelψ and the average seg-

mental length̄ls, to its Cartesian coordinatesx, y andz respectively. The tests included
5 configuration levels, in which the rotation angles applied to each segment ranged re-
spectively from 0 to 4 radians of a uniform random distribution. Level 0 rotation denotes
the same configuration as the model. The average identification rate versus increasing
distortion and configuration level is given in Fig.3. The smoothed surface is based on the
average of 10 random configurations on a given configuration level, with 100 distortion
levelsψ in the range0% to 10% of l̄s.

4.2 Real data

In this section, we report some results for identification of human poses from their freeform
movements in 3D-MLDs. Human motion is a typical articulated motion with deformable
segments. In these experiments, markers as external features were attached at key sites,
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Figure 3: Identification rate versus distortion and configuration.

tightly clothed to limit distortion. A number of subjects, movements and feature point
distributions were investigated. Illustrative results from a representative full-body marker
protocol for a model with 15 segments and 49 feature points are shown in Fig.4. The
model (Fig.4, left) is identified manually, using one frame of clear pose data. The ob-
served point set can be taken from any frame of the captured motion data of the subject.
The data may be subject to unexpected missing points, extra noise points and segment
distortion among human body. From the example results in Fig.4, we observe the pro-
posed algorithm is capable of identifying an articulated pose and dealing with the noisy
data in some degree. Even when some key points, such as join points, have been lost,
the algorithm can still carry on the child-segment identification successfully, referring to
recovered virtual join points. For example, the lower limbs (second view in Fig.4) and
head (third view in Fig.4) are successfully identified even with missing joints at the torso.

Figure 4: Identification of human pose in 3D-MLDs with missing and noisy data:
model(left), identified poses of jumping(second), bending (third), running (fourth).

It is important to choose a set of appropriate parameter values forβ andε relevant
to the type of articulated subjects and data quality. Generally, for subjects with rigid
segments (robot manipulators), distortion toleranceε in Eq.2 can be made small to raise
the ability of rejecting outliers, and the matching size requirementβ in Eq.3 can be low to
allow for more missing data. For subjects with deformable segments (humans), we lower

685



the matching quality criterion to tolerate the raised distortionε, but at the cost of bigger
CTs and increased burden of search (Eq.4). That may also result in some false matches.
In this case, we raise the matching size parameterβ for compensation which, however,
decreases the ability to handle missing data. In Table 1, we list parameter values used for
experiments of human pose identification described above.

parameters for actual human pose in 3D-MLDs
ε (in Eq.2) 10%∼ 15%
β (in Eq.3) 80%∼ 90%

Table 1: Parameters used for human pose identification of freeform movements.

The execution time depends not only on the number of points to be identified, but also
on the level of distortion, the pose complexity and quality of the data. When we applied
our algorithm on human motion data and executed Matlab code on a 866MHz Compaq
with 256MB of RAM, the time for identifying a single frame of pose data of full-body
human models with 30 to 50 points was around 3∼5 seconds.

5 Conclusions

We have presented a new algorithm for articulated 3D sparse feature point matching to
address the problem of an automatic initialization and accurate pose estimation in mo-
tion tracking in a best-fit sense. This aspect of initialization has received only limited
attention. Most published works deal with incremental pose estimation and do not ac-
commodate bootstrapping. We do not make the common simplifying assumptions, such
as pose similarity or small motion, nor do we assume any kind of prior knowledge to in-
fer an initial or partial correspondence between the two point-sets. It is the effectiveness
of initialization that ultimately determines the robustness of the motion tracking. The
algorithm remains a candidate for on-line initialization in point-feature motion tracking.

Acknowledgments:
All model data and motion data used in this paper were obtained by a marker-based optical
MoCap system - Vicon 512, manufactured by Vicon Motion Systems Ltd., installed at the
Department of Computer Science, UWA.

References

[1] J. K. Aggarwal, Q. Cai, W. Liao, and B. Sabata. Articulated and elastic non-rigid
motion: A review. InProc. IEEE Workshop on Motion of Non-Rigid and Articulated
Object, pages 2–14, Austin, TX, 1994.

[2] K. Arun, T. Huang, and S. Blostein. Least square fitting of two 3-D point sets.IEEE
Trans. Pattern Analysis and Machine Intelligence, 9(5):698–700, 1987.

[3] P. J. Besl and N. D. McKay. A method of registration of 3-D shapes.IEEE Trans.
Pattern Analysis and Machine Intelligence, 14(2):239–255, 1992.

686



[4] L. Boxer. Even faster point set pattern matching in 3-D. InProc. SPIE Vision
Geometry, pages 168–178, 1999.
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