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Abstract

The classification of image regions of interest in an image is an important
area of research. Generally most investigations concentrate on the optimi-
sation of the constituent parts of the system without regard to the overall
performance. This work takes a system centred approach. Using a novel
multi-class receiver operating characteristic, which also allows for the inher-
ent uncertainty present, it is shown that the influence of different region based
segmentation algorithms on the performance of classification algorithms can
be determined. The results generated, using this approach, for an airborne
infrared application highlight the non-linear relationship between the con-
stituent algorithms and show quantitatively that the system performance can
be strongly class and segmenter/classifier dependent.

1 Introduction

The use of a segmentation, feature extraction, classification paradigm for labelling image
regions is well established. This type of approach is well known for various applications
including medical, visual, infrared, satellite and imaging radar, [6]. However, while there
has been much work that considers the development and optimisation of the individual
component parts there has been comparatively little, quantitative, work that considers the
interaction of the different processing elements and their integration within a system. This
is particularly important for subsystems that are embedded in a part of a larger system.
Here it is essential to understand the relationship between the different components in the
system. An important aspect of any systems analysis is to “balance” the performance of
the individual components such that the system as a whole attains a desired performance
within constraints of computational cost, robustness, etc.

A crucial requirement, necessary for a systems approach to succeed, is the easy char-
acterisation of the performance of the individual components as a function of the overall
system. However, performance characterisation is a difficult non-linear problem that can
not be achieved by measuring the performance of individual components alone (see [5]
Chap 11). It is necessary to allow for the effects of the processing elements that feed
into any component. That is, better performance may be achieved through the use of a
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matched segmentation/classification process rather than a one constructed from individual
components that are optimal in their own right. To understand this issue it is necessary
to obtain a measure of the performance of the overall system and compare this with the
performance of the individual components. In the past such an analysis has been limited
by the lack of available image data with which to conduct the study and the availability
of useful measures of performance both for the segmentation and classification processes.
Recent work, see the review in [11], has begun to consider the difficult problem of mea-
suring segmentation performance in a well principled way and several measures currently
exist. Castano et al [1] have also reported results of a study that tries to address these
issues for classification problems. However, the results of this work were difficult to in-
terpret. Performance is characterised using a raw confusion matrix, C';; where rows (j)
corresponding to “true” class labels and columns (z) corresponding to the labels estimated
by the classifier, and the single summary statistic

Tr(C)
>4 Cij

Although with this approach it is relatively easy to see the number of true positives and
false negatives it is difficult to determine other performance measures, which may be more
meaningful, such as the false positive. Furthermore, the summary statistic averages out
important class dependent detail. An alternative approach that endeavours to remedy these
difficulties is to derive Receiver Operating Characteristics (ROCs) [2]. Here the true pos-
itive rate is plotted on a graph against the false positive rate to give a clear pictorial view
of the classifier performance. However, this approach is limited to two class problems.
Ideally, therefore, what is needed is an ROC measure capable of dealing with multiple
classes. Another component that has been overlooked, but is essential if a systems ap-
proach is to be taken, is to allow for the uncertainty in the performance estimates that are
derived. This uncertainty arises from both the segmentation and classification processes.
For the purpose of this paper we ignore the uncertainty derived from the variability of the
segmentation process [11], and concentrate on that derived from the classifier.

In this paper we presents an extension of the ROC performance measure that allows
for multiple classes together with the inherent uncertainty in the process. It is shown that
these enhancements allow the detailed performance of a region based classification to be
understood as a function of its constituent parts. By way of demonstration, the extended
method is applied to the controlled analysis of a region classification system for a set of
airborne infra-red images. This uses a number of segmentation and classification methods
to determine the dependence of system performance on segmentation method, choice of
region feature, and classifier type. The results generated using this extended ROC high-
light the complex, non-linear, relationship between these components and quantitatively
show that the system performance is strongly class and segmenter/classifier dependent.

P =

2 Extended ROC Method

Typically the performance of any classifier will be a function of the operating point of
the system (i.e. the classification threshold). It is often inappropriate to treat the cost of
producing false positives (i.e. false alarms) as the same as the cost of producing false
negatives (i.e., failures to detect). The use of Receiver Operating Characteristic (ROC)
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is often adopted to try and gain some insight into this problem [5]. For a given classifier
system, a characteristic curve of the probability of detection p 4 may be plotted as a func-
tion of the the false alarm rate p s, given some classification threshold, on a class by class
basis. Ideally a classifier will produce results that have a high pq and low py, i.e., they
approach the top left corner of the ROC plot. Poor performance on the other hand would
have point close to the line p; = py. See Figure 3 for examples of this representation. The
extension of this idea to multiple classes is not a straight forward process. Typically the
two class ROC curve generalises to an n — 1 surface for n classes. A simpler approach,
which is adopted here, is to choose a single operating point based on a risk/cost matrix
that relates the cost of mis-classification (pq, py) between all pairs of classes and then
plot this on a class by class basis. For the basis of the results presented here both forms
of mis-classification are treated equally. Thus

pali) = = (1

and

(i) = > (Cji — Cy)
P = (00 - %, G

If it is assumed that the distribution in pg, py is Gaussian then to gain an indication
of the uncertainty in the estimation of these values it is sufficient to calculate the mean
(Pa, py) and variance (eq,ey) and plot error ellipse around the ROC value. Hand [5]
describes methodologies for deriving the uncertainty in the ROC. The “more statistically
powerful” is to take a Bayesian approach and average over a classifier’s parameters ob-
tained by training on the same data. Alternatively one can estimate the variability of a
single classifier using a number of different data sets. In the analysis presented here it
is possible to undertake the first of these estimates for two of the classifiers, a Gaussian
Mixture Classifier (GMMC) and MLP neural network. Ideally in both cases it would be
desirable to undertake a full Monte-Carlo estimate of the means and variances. For the
purpose of this study this was approximated using an extension of MacKay’s evidence
approach [8] for the MLP. The GMMC approach used the average performance obtained
classifiers derived from 200 randomly configured start points.

For the kNN classifier, used in this study, it is more difficult to take this approach.
This is because for limited data, with uneven class frequencies, large values of k the
classification is based toward the most frequent class. Consequently, it is difficult to
average over the parameter k£ in a meaningful way. Hence for this classifier a binomial
sample variance is assumed. Here

@)

Pa(i)(1 — pali))
>; Cij

eq(i) =

3

and

py (i) (1 — py ()
(k22 Cri) = 3, Cij

¢ (i) = @)
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Figure 1: Typical Images

3 System Analysis for Infrared Region Classification

To demonstrate the utility of this multi-class ROC within a wider systems centred ap-
proach, it is used here to investigate the relative performance of a number of classifier/
segmentation combinations for an airborne infrared image classification problem. For this
problem the classification system is broken down into a number of stages.

Image acquisition: A setof 150, 512x 512, 3-5y airborne infrared images was digitised
(see typical images in Figure 1). Ground-truth, in terms of 9 classes, was then generated
from these images using using a panel of human observers who hand labelled regions
within the image. All results presented here were averaged across the entire image set.

Image segmentation: Two principle machine segmentation techniques were used for
this study. The variational approach as developed by Mumford and Shah [9] and FORCE,
a region agglomeration with an edge process as developed by Gay [4]. In addition to
these, a control segmentation which was conceived to provide an indication of the up-
per performance bound on the segmentation process was employed. This “benchmark”
segmentation was obtained directly from the classification ground-truth using label prop-
agation. The selection operating points for the algorithms was undertaken using the M 4
performance measure [12]. This measure was applied to compare the output region maps
and the benchmark segmentations as the segmentation parameters were varied. The algo-
rithm parameters were then configured to yield maximum performance in M 4.

Feature generation and selection A variety of features were used for this work (see Ta-
ble 1). The down selection and ranking of these features was achieved using a sequential
backward search (SBS) [7]. This process was undertaken prior to training the classifiers.
However, the performance criteria used to rank the features was based on the summary
statistic P derived from a (k = 8) kNN classifier ! Again, the operating point for the

!t is recognised that the ideal is to use the same technique for feature selection as for actual classification.
However, this was not considered necessary for the purpose of this study.
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Feature Benchmark | FORCE | Mumford-
Shah

1 Size

2 Log size 3 5

3 Brightness 8 4 3

4 Brightness Sd 6 13

5 HE brightness 1 3

6 HE brightness Sd

7 Vertical position 4 2 2

8 Horizontal position 8 7

9 Cert. pos. Sd

10 Horiz. pos. Sd 15

11 Elongation 10 9

12 Lo texture 12 13

13 L, texture 6

14 Lo texture 7 11

15 L3 texture

16 L4 texture 2 12 14

17 L texture 9 5 10

18 Lg texture 9

19 L7 texture 11 12

20 Lg texture 7 6 4

21 2nd order invariant 1 5

22 2nd order invariant o 11 10 8

23 3rd order invariant 3

24 3rd order invariant 4

25 3rd order invariant 5

26 3rd order invariant g

27 3rd order invariant 7 1 1

28 Orientation

Table 1: Features and rankings from down-selection. The numbering indicates the feature
ranking for each segmentation method with 1 being the most important. The top three
features for each segmentation method and, hence, salient features are shown in italic.
These features include Histogram Equalised Features (HE), Laws textures (L) and image
invariants ().

subsequent stages was obtained by removing uninformative features while system perfor-
mance increased to a maximum. Figure 2 shows the variation in performance during the
SBS process while Table 1 summarises the rankings for those features that were retained
in the reduced feature sets.

Classifiers: Three typical forms of classifiers were used for this study.

A voting KNN algorithm was used for the non-parametric classifier. This used a Eu-
clidean distance measure to rank the k£ nearest members of the training set. The value of
k was obtained using a leave one out cross-validation strategy for k = 3,5,...,9 for the
reduced feature set. The optimal value of £ was found to be £ = 8.

The GMMC explicitly modelled the class posterior probability for the feature vector
(or data) & given some training data D as

_ 0(C) plalCis D)
p(z)

where p(C;) is the prior over class i and p(x|C;, D) is termed the class conditional likeli-
hood. This likelihood is modelled mixture of kernels

P((C) = 3 K((@ - ay):io})

p(Cilz, D) ; ©)
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Figure 2: Feature Saliency from SBS for features derived from Mumford-Shah and
Benchmark Segmentations

where

K((x — z45);05;) = p(xij|D) N (zij,07;),
N($i]’, a?j) is a Gaussian centred about some point ¢ ;; € X’; with variance o?j, X ; is the
set of all kernel centres belonging to class i and p(x ;;| D) weights the relative importance
of each centre j for class ¢ [13]. This allows Equation 5 to be written as:

p(Ci) 3 K((x — mij); 07)

6
(@) ) (6)

P(Cz|maD) =

where denominator

p(@) = p(C) Y K@ —zy);o5),
i J

provides the appropriate normalisation.

The classification of the feature vector x is then obtained by thresholding equation
6 using a “winner takes all” strategy which treats all mis-classifications equally. The
centres x;; for the kernels was initiated using a k-means algorithm. Fitting of the kernels
was undertaken by applying the EM algorithm [3], this re-estimates the mean and variance
of the Gaussian kernels, together with the weighting probability p(z ;| D). The improper
prior

p(Ci) =1/fi

was used for the class prior where f; is the frequency of the i*" class in the training data.

The advantage of this method is that it uses a separate set of kernels for each class.
These are tuned using data only from that class. The method, therefore, allows for differ-
ent frequencies of for each class in the training data and so is ideally suited to classification
problems where the number of training examples varies widely between classes as in the
case explored in this paper.
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An MLP classification neural network was used to provide a hyper-parametric clas-
sifier. For this study a three-layer network architecture was adopted. This had a single
hidden layer and an n node output layer where each node corresponded to a particular
class C;. The weights of the network were estimated using an extension of, Bayesian,
evidence approach [8] as described for multiple classes by Nabney [10]. Here a quadratic
weight regularisation term was introduced during training and Softmax activations func-
tions used in the output layer. This ensures that the i output of the network gives the
class conditional probability p(C;|z, D). As with the GMM classifier the classification
was then obtained by “winner takes all” thresholding of the posterior. Importantly, this
Bayesian approach also provides a Gaussian based estimate the uncertainty in the class
conditional probability, which in turn was used to estimate the uncertainty in the ROC
plot.

To determine the number of hidden units the data was split (75%/25%) into training
and validation data. For each segmentation method the performance on the validation set
was then monitored for differing number of hidden units. The network that gave the best
performance was then selected and final classification results generated.

Segmentation || Benchmark FORCE | Mumford-
Method: Shah
kNN 76.1+£0.4|73.6 +0.2(73.3+0.3
GMM 81.5+0.8|71.24+0.4|71.8+0.6
MLP 76.5+0.8|73.8+0.4[69.6+0.6

Table 2: The effect of the choice of segmentation/classification method on system perfor-
mance. The table shows the overall performance results obtained from the three different
classifiers for the reduced feature set using three different segmentation methods. Each
entry is the estimated overall mean percentage of regions correctly classified in each ex-
periment. Errors are at the 1-sigma level and estimated as described in the text.

4 Results

Figure 3 shows the new multi-class ROC plots for six out of the nine possible combina-
tions described in Section 3. Each pane within the figure shows a plot of results from an
experiment with one segmenter classifier combination.

In each plot the y-axis is the true-positive probability, p 4, while the x-axis is the false-
positive probability, ps. The mean performance for each class are plotted as solid points
using a unique colour as shown in the legends. The classes considered were: field type 1
(bare), field type 2 (with crops), copse/wood/forest, hedge-row, road, town or built-up ar-
eas, individual building, sky and water. The ellipses about each plotted point indicate the
uncertainty estimated for that class using the results of the experiment from 150 test im-
ages. Notice that these uncertainty ellipses are generally elongated along the y-direction
indicating that the p; was found to be more uncertain than the p s.

Clearly, a good system would have results for all classes that cluster in the top-left
of each plot, signifying high pq and low p;. In contrast, a system with points close, or
whose error ellipses intersect, the diagonal line py; = py would be “guessing” and have

543



A
%ﬁ

2002

little utility. This diagonal lower limit on performance is shown as the hollow points,
coloured appropriately for each class. These indicate the classification performance that
would be obtained by assigning class using only the measured frequency for image re-
gions belonging to that class.

It is apparent from these results that there is significant variation in performance both
between individual classes and between combinations of segmenter and classifier. It can
be seen that almost all of the results are significantly better that that would be obtained
by assigning classes on the basis of measured frequency. However, in general, excep-
tions were obtained from combinations involving the kNN and MLP classifiers (see typ-
ical examples are shown in panes d, e and f). Here classes field type 1 and copse/wood
are close to the diagonal. Also, was also noticed that most results, regardless of seg-
menter/classifier choice, are clustered close to the y-axis indicating low false positive
rates. Exceptions were found for combinations involving the FORCE segmenter (a typ-
ical example is shown in pane b), where field type 2 exhibits excessive false positives.
Preliminary investigations suggest that is is due to the FORCE segmentation merging
fragments of field into neighbouring regions.

Comparisons based on the choice of classifier type suggests that the GMMC gener-
ally performs both better and more consistently than the other classifiers. Class by class
results can be seen to cluster at higher values of pg and low values py across the range
of segmenters. In contrast both the kNN and MLP results were found to be generally
lower in p4, were more spread out and exhibited a far greater sensitivity to the choice of
segmenter. Comparison of the results from the kNN classifier combined with the Bench-
mark and Mumford-Shah segmenters show that better performance was obtained from
the machine segmentation rather than the Benchmark. It is speculated that this is due
to the relatively larger numbers of regions obtained from the Mumford-Shah algorithm.
This result highlights the complex interaction between segmentation and classification
components.

Table 2 summarises the results measured using the summary statistic P. The contrast
between this averaged performance measure and the extended Multi-Class ROC is clear;
the class averaged summary statistic results show little variation across the nine system
configurations and so is not as informative. From these observations it is clear that this
extended multi-class ROC provides insight into the relative effects of the classifier and
segmenter subsystems.

5 Conclusions

In this paper multi-class extension to the ROC which also allows for uncertainty has been
demonstrated on an infrared-image region-classification application. It has been shown
that this ROC method allows insight into the complex relationship between between seg-
mentation and classifier components of a region classification system. The results also
show, at least for the implementations of the three classifiers and two segmenters con-
sidered, that performance strongly depends on classifier/segmenter pairing; a difference
that is not apparent from a simple summary statistic. Furthermore, a very significant
class by class variation is also apparent. Lastly, although the function of this study is not
to compare segmentation and classification methods, they suggest that for the imagery
considered a GMMC offers the both the best and most consistent performance and not
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surprisingly that improved segmentation may yield significant improvements to system
performance.
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Figure 3: Muli-Class ROC plots as a function of segmenter and classifier for the reduced

feature set.
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