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Abstract

We describe a novel extension to the CONDENSATION algorithm for track-
ing multiple objects of the same type. Previous extensions for multiple object
tracking do not scale effectively to large numbers of objects. The new ap-
proach – subordinated CONDENSATION – deals effectively with arbitrary
numbers of objects in an efficient manner, providing a robust means of track-
ing individual objects across heavily populated and cluttered scenes. The key
innovation is the introduction of bindings (subordination) amongst particles
which enables multiple occlusions to be handled in a natural way within the
standard CONDENSATION framework. The effectiveness of the approach
is demonstrated by tracking multiple animals of the same species in cluttered
wildlife footage.

1 Introduction

Tracking objects over the course of an image sequence is one of the basic tasks in Com-
puter Vision. The resulting trajectory can be either of interest in its own right or used as
the foundation for a higher level analysis. Applications include surveillance and recogni-
tion systems [11, 6, 9] and advanced human-computer interaction[8]. However, designing
robust tracking algorithms is difficult, requiring mechanisms to deal with issues such as
weak distinguishing image features, background clutter, erratic and discontinuous motion,
multiple and occluding objects, and many other problems.

Tracking algorithms use two sources of information to tackle these issues: a model
of the dynamical behaviour of the object being tracked; and a model of its appearance
within an image. The former can be obtained either from simplifying assumptions or
by using a priori information obtained, e.g., that obtained from exemplars, whilst the
latter will involve a combination of assumptions about the imaging geometry and the 3-D
structure of the objects being tracked. The tracking process then involves finding a model
configuration which balances consistency of the dynamical model against image support
within the individual frames, leading to robust estimates of the object position.

The classic formulation of this approach is via the Kalman filter, although its assump-
tion of a unimodal probability distribution and standard Gaussian interpretation means
that its performance is limited in difficult tracking scenarios. A more robust approach
and one that has found considerable success recently is particle filtering [3] and in par-
ticular the CONDENSATION algorithm [2]. These methods are based on creating an
approximation to the full probability distribution of the object’s configuration over all
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possible locations using sampling. This enables them to retain multimodal probability
distributions, making them robust to temporarily ambiguous image support and hence
able to maintain tracking even in the presence of clutter and occlusions. They also have
the added advantage of being simple to implement, with low computational cost and clear
potential for real-time use (cf. applications in [8, 6]). Equally important is that they also
provide a coherent Bayesian formulation within which to incorporate a priori knowledge
about the dynamic behaviour of the object being tracked, facilitating the use of densities
learnt from exemplars and hence improving the robustness of the tracking.

This paper is concerned with using particle filtering for a particularly challenging
task, namely that of tracking many objects of the same type in a cluttered sequence. Our
application area is robust tracking of animals through wildlife footage as a precursor to
automated indexing and archiving [12]. As the sequence in Fig. 3 illustrates, the footage
typically contains poor distinguishing image features and significant clutter caused by
herding and flocking animals. Multiple object tracking within such sequences is difficult
since the appearance model uses the same types of image features to support each object,
and thus there is plenty of scope for ambiguity in the measurements as objects start to
become occluded or pass by each other. Its sampling framework and ability to retain
multiple modes would suggest that particle filtering should provide a means of addressing
such problems, although to date this has not been fully exploited. Previous extensions to
multiple objects, whilst having theoretical rigour, have been designed to deal with at most
two or three objects and do not readily scale to large numbers of objects [7, 6, 5].

To address this, we have developed a novel extension of CONDENSATION which
deals naturally and efficiently with tracking an arbitrary number of similar objects. The
key innovation is the use of an explicit representation of occlusion amongst particles
within the sampling framework which allows particles to occlude each other. This is
implemented by introducing asymmetric bindings between pairs of particles as and when
they occlude, with the occluded particle becoming subordinate to the occluder. In con-
trast to augmenting the particle state by background and foreground objects as in [7], this
maintains a constant particle size irrespective of the number of objects being tracked. Al-
though this means that we lose some of the rigorous probabilistic interpretation, we gain
the advantage that the method scales naturally to many objects, with the only overhead
being the need to use larger sample sets (as would be expected).

In the next section we describe the new approach and then in Section 3 give details of
using it within the CONDENSATION framework for tracking animals in wildlife footage
described in [12]. Results on the sequence in Fig. 3 illustrate that the approach is robust to
multiple occlusions and provides an effective method for tracking individual birds across
highly populated and cluttered scenes.

2 Particle Filtering and CONDENSATION

As our extensions to CONDENSATION are motivated partly by the desire for efficient
implementation we review the basics of particle filtering and CONDENSATION first;
readers are referred to [2, 8, 6] for further information.

The aim of particle filtering is to construct a probability density p�X t��� over the
state of a temporal stochastic process Xt over a multidimensional state space X. Den-
sity p�Xt��� is conditioned upon the density in the previous frame p�X t�, a stochastic state
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evolution model� and observations of data y t affected by the value of Xt. (Thus for track-
ing Xt is the location of the object and yt is the image at time t). Particle filtering uses a
weighted sample set ��si� �i��

N
i�� to represent the distribution

�N
i�� �iÆ�si�, where Æ��� is

a Dirac delta function and s i is a point in the state space X (cf. [2].) This distribution can
be sampled from effectively and can be shown [2] to become a more accurate representa-
tion of the true underlying distribution as the number of particles N increases. Since this
includes multi-modal distributions particle filters can cope effectively with temporarily
ambiguous image support.

Particle filtering deals extensively with particles with associated (positive) weights.
To simplify the exposition throughout the rest of the paper, we define ‘choose proportion-
ately k particles from �’ to mean ‘choose (with replacement) k particles from set �, with
the probability of selecting each item being proportional to its weight’. Thus, the basic
particle filtering algorithm is as follows:

1.Sample p�Xt�yt � � � y�� Choose proportionately N samples from ��s i� �i�� to get �s�i�.

2.Evolve Apply the stochastic state-evolution model � to particles in �s �

i� to get �s��i �.

3.Measure support to get p�Xt���yt�� � � � y�� For each particle in �s��i � measure the
support ���

i from frame t�� to get the weights for new density ��s ��

i � �
��

i ��.

Whilst step (1) can be performed in O�N ���N� time using uniformly distributed ran-
dom numbers and binary search, in practice an O�N� deterministic approximation is used.
Conceptually this involves assigning the particles consecutive subintervals of �	� �� with
length proportional to their weight and the particle owning the interval containing the
point i�N (for 	 � i � N) is taken as the basis for a new sample s i in pt. In principle
this could give poorer results than true sampling; in practice, as almost all the mass of the
distribution should be concentrated in a few particles, there is little difference.

Finally, when dealing with complex models amenable to decomposition, the algorithm
can be extended to partitioned sampling [8]. In the simplest form, when the configuration
space X is structred as Xtop�Xbottom then the algorithm can be applied twice for each
frame, first to the distribution of Xtop and then sampling from this distribution p�Xtop� to
find the distribution of Xbottom. For example, in hand tracking the configuration of a hand
can be represented as the position of the body of the hand – X top – and the positions of
the fingers relative to the it – Xbottom. Informally this is advantageous because to ‘find’
the supported configuration x 
 �xtop� xbottom� standard CONDENSATION’s stochastic
evolution step must produce xtop and xbottom in the same particle, whereas partitioned
sampling first ‘finds’ xtop (in the sense of a distribution which is peaked over likely values),
then ‘finds’ the xbottom value given the correct xtop value. Thus the number of particles
needed for good tracking changes from O��X top���Xbottom�� to O��Xtop���Xbottom��. (We
gloss over some details here – [7] has a full discussion.)

2.1 Subordinated CONDENSATION

In [7] a probabilsitic exclusion principle for tracking multiple occluding objects was in-
troduced by having each particle containing two objects: a (potentially occluding) fore-
ground object and a (potentially occluded) background object, where ‘occlusion’ is taken
to mean ‘partial or total occlusion’. The principle states that a ‘feature’ in the image can
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Figure 1: Representing multi-object particles using subordinated particles: (a) basic rep-
resentation scheme; (b) temporal propagation of subordination links

be used to support at most one of the two objects. By factorising the state density, parti-
tioned sampling can then be used with the first level being the foreground object and the
second level the background object. This sequential sampling makes it easy to prevent
any observations which correspond to the foreground configuration from being used for
the background object. However augmenting the particle states in this way requires a
separate layer from each new particle so that it does not scale to the large number of ob-
jects we want to consider. Equally it is potentially less compact when the objects are not
overlapping as two configurations differing only in their relative depths describe the same
underlying situation. Our aim is to produce an algorithm which incorporates the notion of
‘observation exclusivity’ but which flexibly deals with the spectrum from no overlapping
objects to many overlapping objects.

The fundamental idea is to keep a single set of particles to represent the state density
but to allow the possibility of one particle occluding another. If a particle A is subor-
dinated to a particle B then A is behind B. The obvious way to do this is by ‘binding
together’ some particles, in effect running part of the density using standard CONDEN-
SATION and part using the exclusion scheme in [7]. However, consideration shows that
the occlusion relation is asymmetric: the behaviour of the occluded particle depends upon
the precise details of the occluder whereas the occluders’ behaviour is indistinguishable
from a normal particles’. Thus we can economise on storage and more importantly eval-
uation of image support by giving each particle a (possibly null) subordination link to
an occluding particle (as shown in Fig. 1). It turns out that this scheme has very few
differences from the standard CONDENSATION algorithm, the two key ones being that
subordination links must be propagated over time and the observation support of occluded
particles must be calculated accounting for the occluder.

Propagating subordination links over time is done (using an assumption that the ac-
tual behaviour of the occluder and occluded are independent) using a probabilistic scheme
illustrated by Fig. 1b: With particle w subordinated to v, the descendants of both are pro-
duced in the precisely the standard way by sampling. Each descendant of the occluded
particle is then linked (independently) to a descendant of the occluder by choosing propor-
tionately from the set of descendants of the occluder. In terms of the lefthand illustration
in Fig. 1b, z (descendant of w) has a link formed with v’s descendant x with probability
�x���x��y� and to y otherwise. Thus, if x is chosen the link from z to x is made as in
the righthand part of Fig. 1.

These considerations lead to the algorithm in Fig. 2. There are three subtle points here:
(i) Using the deterministic sampling approximation and keeping the samples in order, all
of the occluders of a particle have all been evaluated before the particle they are occluding.
(ii) As written it is possible for a particle which produces descendants in step 1a to have an
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1. Generate the set of derived particles � t��
�s�� � � � � sN� for time t�� from the
density at t using the deterministic approximation. As each s i is generated:

(a) If si’s parent particle is occluded by s t
occl then

	 choose proportionately a descendant s t��
occl of st

occl
	 mark the area st��

occl occupies in occluded bitmap and jump to step 1c.

(b) Otherwise, if random fraction � probability of entering occlusion then add
si to the newly occluded particles list and start at step 1a for next particle.

(c) Otherwise, measure the image support � i for si (using occluded bitmap).

(d) If st��
occl no longer occludes s i then remove the subordination link.

2. For each sample si on newly occluded particles list:

(a) Determine (from all current particles in � t��) the set of potential occluders.

(b) Choose proportionately an occluding particle s t��
occl and mark the area st��

occl
occupies in occluded bitmap.

(c) Measure image support � i for si (again taking account of occluded bitmap).

Figure 2: Overview of subordinated CONDENSATION algorithm

occluder which does not produce descendants (because it has a very low weight). Again,
for deterministic sampling we can avoid this by boosting such weights by the minimum
amount required to ensure they will generate one descendant in the iteration. (iii) In step
2a to ensure that a particle representing an object does not become subordinated to another
particle representing the same object, particles with a common ancestor within the last N
frames are excluded from the set of potential occluders. This is an effective compromise
limiting the amount of stored history needed.

Note that in the algorithm steps 1a, 1d and 2a require a task specific technique for
ascertaining if the one of the two objects s i and sj must be occluding the other, whilst
steps 1a and 2b require finding all the image pixels belonging to an object s i. We describe
the algorithms we used in our animal tracking experiments in Section 3.1.

2.2 Sample impoverishment and probability decay

For multiple object tracking however there are some final issue, stemming from our use
of the state density to represent the configuration of multiple objects rather than a single
object (with further details in [12]).

Sample impoverishment. As the state evolution model is stochastic rather than deter-
ministic, even given the ‘correct’ previous state it may take many samples to produce
the ‘correct’ current state. Thus the number of new particles derived from a previous
state is proportional to how much the tracker explores the possiblities. The basic CON-
DENSATION algorithm generates derived particles proportional to the current support,
so a mode tends to be lost as its weight falls below the noise inherent in the evolution
model. This can be avoided by importance sampling [8] which allows additional samples
to be derived in certain areas (motivated by some other source of information). Here the
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number of samples derived from s i is proportional to an importance function f but then
using �i�f �si� as the weight of the resulting samples. However the greater the difference
between �i and f �si� the lower the weight of the final particle even when the image ob-
servations give strong support, so this technique can only be used to adjust the sampling
behaviour by a limited amount.

Probability decay. We measure the support for a particle s using a fixed observation
model 
. This is inevitably a simplified model which, whilst giving high support for
all objects, will have unpredictable variations between objects. Consider the idealised
case of objects A and B which consistently give reponses of p and q respectively. Then
after t time-steps the ratio of the state density weight for B compared to that of A will be
approximately�q�p�t, i.e., it has decayed geometrically. This issue is difficult to deal with
in a standard numerical way since by definition the degree to which an object matches
the learned model is a priori unknown. Rather, we want to deal with it by periodically
‘normalizing’ the confidence of any hypotheses which are sufficiently supported.

We deal with these two issues in an integrated way based upon finding clusters within
the state density and using those to construct a Voronoi tesselation [10] based upon these
cluster centres. For these purposes only the 2-D positions of the reference point are used.
Within each of these cells the distribution is describing primarily one object. Thus, we use
the following to avoid sample impoverishment and probability decay using the following
steps respectively:

	 Every step, build an importance function which results in equal numbers of samples
being taken in each Voronoi cell.

	 Every N steps rescale the weights in each cell so that the peak weight is 1.

Empirically we have found that N 
 � works well. This intuitive scheme needs to be
modified for the case of subordinated particles, and we do this in a simplistic way of
treating each ‘depth-level’ independently, i.e., by computing a separate Voronoi diagram
for each occupied depth level.

3 Models for animal tracking

In this section we briefly describe our representation of animals used within particles
and then describe our implementation of observation exclusivity for this representation.
Experiments using subordinated CONDENSATION for tracking birds in the sequence
shown in Fig. 3 are then presented.

State representation. Our basis is a set of 2-D points linked together to form a‘skeleton’
as shown for a bird in Fig. 4a–b. (Note the skeleton models image-plane appearance and
not necessarily the anatomical skeleton.) It was manually chosen so that the configuration
of the animal away from the nodes is well approximated by the links between them. For
example, between the joint in the middle of the wing and the end of the wing the line
between them follows the bird; this would not be the case if the middle of wing joint were
removed and the end of the wing linked directly to the node on the side of the body.

The nodes on the skeleton were then divided by hand into suitable levels for parti-
tioned sampling. Thus, Fig. 4b shows that the midpoint of the body is sampled over first,
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Figure 3: Frames 6, 18, 30 & 42 from a sequence of birds flying against an orange sky
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Figure 4: Representing animals: (a) original bird; (b) points representing (c) observation
model consisting of ellipse for body and evenly spaced points along wings

then the positions of the upper halves of the wings, and finally the tips of the wings. This
strategy of sampling over dependent points after sampling over those they depend upon is
effective in reducing the total number of samples required, but does require manual anal-
ysis to determine it. This is not a drawback as our application is dealing with potentially
previously unseen animals and so we require a minimal level of manual analysis to collect
data for learning the motion model (described next).

Stochastic motion model. We present only an overview of the motion model for space
reasons; see [12] for more details. We assume that (i) all the animals are moving in the
same way and (ii) the motion can be split into a global position change and a periodic
relative motion of the body parts. As we are tracking many animals over potentially
hundreds of frames it is reasonable to use manual markup of points to be tracked on one
animal over approximately two cycles of its motion to learn a global motion model which
is then used for all the animals. We assume ‘constant velocity plus noise’ for the position
of a reference point on the animal – the midpoint of the underside in the case of the bird
in fig 4b – since the camera is often jerkily panning to keep the animals framed in the shot
and a separate model to predict the positions of the points on the skeleton relative to the
reference point. The limb model essentially treats the position in motion cycle as a latent
variable which increments cyclically each frame and constructs a ‘body-configuration to
body-configuration’ predictor at each point in the cycle.

Instance and model coordinates. There are two kinds of inaccuracy in the 2-D limb
model described above, namely the inherent noise in the motion and the much larger
variations due to differences in 3-D orientation and physical size between the animal the
model was learned from and the animal being tracked. Rather than use a 3-D model
(which would be difficult in practice given the relative scarcity of data and the fact the
birds are small objects far from the camera) we attempt to take each animals coordinates
as defined in a separate instance coordinate system and the single global motion model
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Figure 5: Schematic of methods used for (a) deciding if occlusion must be occurring and
(b) deciding which image features cannot be used by the occluded object

as defined in a model coordinate system. Then if we attach to each animal a warping f
from instance coordinates to model coordinates, we can perform prediction by mapping
the state into model coordinates, applying the model and mapping the prediction back
into instance coordinates. We use the simple warping

�xi� yi�
f

�� ��xi��yi�
��xi 
�� �
yi ��� ���xscale� �xi ��� ��yi 
�� ���yscale� (1)

with two scale factors as different sized animals tend to scale differently in vertical and
non-vertical directions, and � permitting physical rotation. These easily interpretable
parameters can thus be restricted to lie in ‘plausible’ regions (e.g., birds can be allowed
to fly at an angle of up to ��Æ whilst prohibiting unrealistic configurations such as flying
upside down), and a least squares solution from ��x i� yi�� and ���xi��yi�� can be found
analytically.

Measuring image support. For the initial experiments described in Section 4 we used
one crudely hand-segmented frame to learn a bird/background likelihood model based
upon pixel RGB values, modelling each class with a 6-component Gaussian mixture
model [1]. The first level of the sampling should strongly localise the overall location
of the bird using the large body. We do this by finding (via hill-climbing) the ellipse
through the main point of the bird which maximises the sum of the log likelihoods of
pixels inside the ellipse belonging to the bird and outside the ellipse belonging to the
background – where the initial values are given by static ‘per-bird’ parameters – and us-
ing this as the observation weight. The two lower levels progressively localise the wings,
so their support is measured by summing the log likelihood of a small number of points
equally spaced along the wings being in the bird class. This is summarised in Fig. 4c.

3.1 Implementing observation exclusivity

The algorithm in Section 2.1 requires a method for determining if one particle could be
occluding another and a method for preventing measurements of the support for an oc-
cluded object using features which belong to its occluder. Although these are related tasks,
deciding possible occlusion is much more common and should therefore use a relatively
inexpensive technique.

As we are assuming that the animals can be represented by a skeleton of points, we
use whether the two skeletons intersect as a test for whether one of the animals must be
occluding the other (as shown in Fig. 5a) since determining intersection can be performed
quickly. This is a reasonable approximation for ‘thin-limbed’ animals but would be less
appropriate for ‘bulky’ animals such as bears.
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(a)

(b)

Figure 6: Tracking results: (a) frames 6, 18, 30 & 42 from the birds sequence; (b) subre-
gion of frames 19, 21, 23, 25 & 27 showing an example of occlusion

To exclude foreground object features being used in background objects we simply
prevent image pixels corresponding to marked ones in the bitmap being used when getting
support for the background object (as shown in Fig. 5b). To approximate the set of pixels
belonging to the foreground object we use a very simple technique: each point on the
bird is linked to another, so that there is a well-defined normal vector to this edge at each
point. The offset (in positive and negative directions) along the normal which maximises
where the probability of belonging to the bird (measured using the same likelihood model
as the basic observations) first drops below ��� can be found. These points define a
(non-convex) polygon which can be filled using standard graphics techniques [4].

4 Experiments

We demonstrate the performance of the algorithm on 50 frames from the sequence in fig-
ure 3 consisting of over 15 birds flying against an orange sky. As our elementary image
feature is a bird/background likelihood model on pixel RGB values, the background is
‘cluttered’ in as much as many background pixels support belonging to the bird class. In
addition several of the birds pass behind others during the sequence, testing the occlusion-
resilience of the algorithm. The dynamical model was learned from two cycles of one
manually marked up bird. The initial state density was generated by marking the ap-
proximate reference point of each bird in the initial frame (along with the body ellipse
static parameters as in Section 3) and placing an equal number of samples in the vicin-
ity random choices for both the position in the motion cycle and the parameters for the
instance-to-model coordinate-mapping. The tracker was then run using 1200, 6000 and
6000 particles respectively on each of the three levels of the model (i.e., very roughly 400
particles per individual bird on the lower levels). Fig. 6a shows the mean configurations
within the cluster at equally spaced frames throughout the sequence. Although not shown,
the tracker quickly converges onto the correct position in the cycle and mapping parame-
ters for each bird over the first five frames leading the result for frame 6. The results show
the robust tracking of the birds in the sequence despite heavy occlusion between birds, an
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detailed example of which is shown in Fig. 6b. (Note that the unmarked bird on the right
of the final image in Fig. 6a moves into shot midway through the sequence, a situation the
algorithm currently does not deal with.)

Note that whilst the wings sometimes drift from the correct position, this is essentially
due to the somewhat simplistic measurement model being used, and in all cases the model
locks onto the wings again later in the sequence.

5 Conclusions and future work

We have presented an extension to the CONDENSATION algorithm which can be used
for efficiently tracking both individual and multiple objects, based upon forming subordi-
nation links between particle and enforcing an observation exclusion principle on linked
particles. Tracking results on the bird sequence suggest its potential as a robust and effi-
cient method for tracking multiple objects.

One unsatisfactory aspect is the use of a relatively strong observation model in the
form of an object/background likelihood model learned from the sequence. In future
work we intend to find ‘image features’ better suited to the issues in wildlife footage and
are amenable to being learned automatically. We will also be investigating bootstrapping
of the models required for tracking, possibly by using generic models (e.g., bird, biped,
quadruped, etc) from a library, deforming them to improve tracking performance. Another
improvement would be to use some feedback about how well the tracker is performing to
determine the number of particles to be used in the next frame.
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