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Abstract

This paper presents a strategy for rapid summarisation and browsing of video
sequences. The input video is first transformed into a sequence of represen-
tative feature vectors. Using this representation a utility function is designed
that assigns high reward to subsequences of keyframes that are maximally
distinct and individually carry the most information. For a specified level of
detail and endpoints the keyframe sequence that maximises this utility func-
tion can be obtained by a non-iterative Dynamic Programming procedure,
thus allowing the user to efficiently zoom in on any part or all of the video
sequence. For the sake of compactness and clarity the working of the algo-
rithm is illustrated on a television commercial.

1 Introduction

The proliferation of video material, both home and produced, has created a pressing need
to develop tools to rapidly and efficiently summarise and browse these sequences. This
has traditionally been done by segmenting the video into shots, and to extract within each
shot a number of representative keyframes. The sequence of keyframes then serves as a
summary for the video sequence. The most serious shortcoming of this approach is that
it presents the user with a fixed level of detail. Often more (or less) information may be
required for a user to get an adequate overview of a particular video sequence.

The main aim of this paper is to develop a browsing strategy where the level of detail
is determined by the user. The proposed method does not require explicit shot detection,
and allows the level of detail to be smoothly varied between a small number of keyframes
and the entire video sequence. As opposed to clustering approaches it is non-iterative and
thus computationally more efficient.

The method represents each frame in the video sequence by a low-dimensional fea-
ture vector. Based on this feature representation two functions are defined. The first, a
frame utility function, evaluates the goodness of a frame as a keyframe. Good keyframes
should be well illuminated and contain lots of information. The second, a frame dis-
tance function, computes the similarity between any two frames in the video sequence.
Keyframes should be maximally dissimilar. Using these two components a utility func-
tion is constructed that measures the goodness of any keyframe sequence. The form of
this function is such that the optimal keyframe sequence can easily be obtained by Dy-
namic Programming. Thus the approach is non-iterative. It can accommodate flexible
endpoints, allowing the user to zoom in on any part or all of the video sequence. Any
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number of keyframes can be specified between the endpoints, thus allowing a flexible
level of detail.

There have been several previous efforts at generating automatic video summaries at
different levels of detail. In [7, 8] a feature representation is used for the video frames, and
video summaries are obtained by iterative hierarchical clustering of the frames in feature
space under spatial and temporal constraints. In [2] the trajectory of the video in feature
space is recursively simplified using a curve splitting algorithm, and represented as a tree
structure. Frames at junctions between curve segments at different levels of the tree are
then used as keyframes to summarise the video at different levels of detail.

The remainder of the paper is organised as follows. Section 2 presents the feature
representation of the video frames. Sections 3 and 4 develop the frame utility and frame
distance functions, respectively. The Dynamic Programming algorithm to compute the
optimal keyframe sequence is discussed in Section 5. Despite its non-iterative nature
this algorithm can still be computationally expensive for very long video sequences. An
efficient strategy to deal with such sequences is outlined in Section 6. Some experiments
and results are reported in Section 7 before concluding with a summary in Section 8.

2 Video Frame Features

Instead of working directly with the raw images a low-dimensional feature representa-
tion is used. The features, once computed, are used in all subsequent processing, thus
massively reducing the computational complexity. If the features are chosen carefully the
pertinent information for keyframe extraction can be isolated and the redundant informa-
tion removed.

In the approach here the RGB input images are first converted to a chrominance rep-
resentation to achieve some degree of invariance to changes in illumination. In the spirit
of [3] the chrominance components for each pixel are computed according to (C,Cs) =
(R,G)/vVR? + G? + B?. The chrominance images are partitioned into four regions by
halving them horizontally and vertically. In each region a twenty bin normalised his-
togram is computed independently for each of the chrominance components. For region
r,r = 1---4,in frame ¢ these are denoted by hf:} and hfj, respectively. The full feature
vector for frame ¢ is constructed as

f, = (t,h{}, h{3---h{}, h{3, T), )

where I, € [0, 1] is the average luminance of all the pixels in frame ¢. Note that the frame
index is also included in the feature vector. The region based histogramming achieves
invariance to small camera movements while preserving coarse structural information.

3 Frame Utility Function

A frame utility function is required to measure the goodness of any frame in the video
sequence as a keyframe. This notion of goodness has a large subjective component, which
depends on the nature of the video material and the particular user, and may even change
over the duration of a video sequence. However, there are some characteristics common
to all good keyframes, and it is these that a general purpose utility function should exploit.
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Typically good keyframes should carry the most information and be well illuminated.
The utility function used here is designed to capture these simple notions. A crude mea-
sure for the amount of information is the entropy of the colour distribution in the image.
The higher the entropy, the larger the colour variation, which, in general, corresponds to
a higher level of detail. For a B bin normalised histogram h = (h; - - - hg) the entropy is
defined as

B
H(h) == hylogh, € [0,log B.
=1
Using the feature representation in (1) and the definition for histogram entropy above the
frame utility function is constructed as®

£ Umin if T < Tth )
u = .
(®) n (% St (H®S) + H(hf?))) otherwise, @
where umin = 0.001 is the minimum value for the frame utility function, I, = 0.2 is
the threshold above which frames are deemed to be well illuminated, n is a hyperbolic
squashing function that limits the utility to lie within [umin, 1], and (H (hS?), H(h$?))
are the entropy values for the normalised chrominance histograms in region r. The utility
function assigns a low value to frames that are poorly illuminated. For frames that exceed
the illumination threshold the utility is proportional to the average entropy over all the
regions. This crude and simple utility function was found to work well in practice.

4 Frame Distance Function

For summarisation and browsing purposes the chosen keyframes should be maximally
dissimilar. It is thus necessary to define a function to measure the distance between any
two frames in a video sequence. Using again the feature representation in (1) an image
based distance is defined as
4
d (£, ;) = Z (B(MS:, %) + BB, hG))
=1

where B(hg, h;) is the Bhattacharyya distance between the histograms h, and hy, defined
as

B(hy, hy) = [1-2%] €0,1].

However, the image based distance is not enough. Frames during fading transitions in
produced video can be highly dissimilar, resulting in a disproportionally large number of
keyframes in and around the region of the transition. To eliminate this effect it is necessary
to penalise keyframes that are temporally close. This can be achieved by defining a time
based distance function of the form

d" (f;,f) =1 — exp(—als ),

where a = log 2/Ty, with T, = 0.25 the exponential decay constant. Finally, the com-
bined frame distance function is defined as the product of the image and time based dis-
tance functions, yielding

d(f,, £,) = d!(f,,£,)d" (f,,£,). (3)

For notational clarity the frame index subscript is suppressed in what follows.

426



=
it

5 Keyframe Computation

Given a video sequence of N frames the objective is to find the K best representative
keyframes to summarise the video. These frames should be maximally distinct and in-
dividually carry the most information. The approach here is to construct a utility func-
tion that captures these criteria, and then to maximise this function to yield the optimal
keyframe sequence. Such a utility function is not unique, and should be constructed to be
amenable to straightforward optimisation, where possible. One particularly popular form
is given by

K
C(SliK) = u(fsl) H g(fsk—l ’ fsk)u(fsk)7

k=2
where s1.x = {(81---8K) . Sk € {1---N}, k= 1---K; Sk < Sk41, k=1---K —
1} denotes the candidate keyframe sequence, and

d(fs,f) ifs<t
0 otherwise

J(f.h ft) = {

has been constructed to honour the constraint that the sequence of keyframes should be
strictly increasing. To prevent numerical underflow problems the alternative logarithmic
representation is used here, i.e.

K
log C(s1.x) = logu(fs,) + Y [logd(fu_,, &) +logu(f,)] . ()
k=2

The optimal keyframe sequence is the one that maximises this utility function, i.e.
s1.x = arg maxlog C'(s1.x)-
S1:K

The keyframes in this sequence will have high individual utility and be maximally distinct.
The form of the utility function in (4) facilitates straightforward maximisation using
Dynamic Programming. The algorithm is summarised below.

Algorithm 1: Dynamic Programming for Keyframe Computation

Initialisation

e Inputs: number of keyframes K, frame feature sequence f;., (optional)
endpoints (s}, s¥).

e For fixed SI,SetDl’S; =0, D1t= N,t;ésf.
For flexible s}, set D1+ = logu(f;), ¢
Forward Iteration
e Fork=2---K, compute

Dy = r{r%ax {Dg_1,s +10gd(fs,ft)} + logu(fy), t=1---N
s€

®j_1, = argmax{Dj_1, + log d(fs,ft)} +logu(fy), t=1---N
se{l1---N}
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Traceback

e For fixed s3, set s} to the desired end frame.

For flexible s}, set s} = argmaxD ;.
te{l. N}

° Fork:K—l---l,setsZ:fbk,serl.

|

The algorithm requires the individual frame utilities for all the frames in the video
sequence, as well as the frame distances between all the possible frame pairs. These
computations are O(N) and O(N?), respectively, but are based on the low-dimensional
feature representation, and only need to be performed once. The algorithm itself is non-
iterative and of O(INK') complexity. Further computational savings are possible due to
the constraint that the sequence of keyframe indices is strictly increasing. The algorithm
supports both flexible (automatically selected) and user-specified endpoints, and an ar-
bitrary number of keyframes can be specified, thus allowing the user to zoom in on any
portion (or all) of the video sequence to any level of detail.

6 Processing Long Sequences

Despite the non-iterative nature of the algorithm very long video sequences can still incur
high computational costs, both in the preprocessing stage and during the computation of
the keyframes. A simple approach to reduce these costs is to segment the video into its
constituting shots, and apply the algorithm to each shot individually. For digital home
video shot detection is trivial, since the time stamps are encoded in the frames. Many
algorithms exist for shot detection in produced video, e.g. [1, 5]. Here a robust detection
algorithm is designed using the frame distance function defined earlier. This algorithm is
outlined in Appendix A. Note, however, that the shot detection algorithm is not required
to be 100% accurate, since the browsing algorithm itself is robust to transitions.

Denote by N the total number of frames in the video sequence, K the total number of
keyframes required, S the number of shots, and IV;, s = 1-- - S, the number of frames in
shot 4. The main problem to be resolved is the aIIocatlon of the number of keyframes per
shot, K;, i =1---5, for a given level of detail K = ZZ 1 K. A naive approach would
be to set the number of keyframes proportional to the shot duration, i.e. K; < N;, but this
takes no account of the possible variation in the shot content. In the approach here the
shot content is summarised by computing the absolute minimum number of keyframes re-
quired to represent a shot, denoted by K7, in an optimal sense. The number of keyframes
for a given level of detail is then set to

S
K; = [KiK/ Y K], (5)
j=1
where [-] denotes the rounding operation. This strategy implicitly takes account of both
the shot content and duration.

The next section outlines the optimal strategy to compute the minimum number of
keyframes per shot, whereas the following summarises the browsing strategy.
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Computing the Minimum Number of Keyframes per Shot

Computing the minimum number of keyframes per shot can be viewed as a model order
selection problem, which can be solved by a suitable definition of a likelihood function
and using this within Bayes factors. For a large number of data points an asymptotic
approximation to the Bayes factor is given by the Bayes Information Criterion (BIC) [6].
For the problem considered here this criterion is given by?

K* = argmin{—2log L(f.n|3}/£) + Klog N},
K

where L is the likelihood function, to be defined, and s£ is the keyframe sequence
of length K that maximises this likelihood. To define the likelihood each keyframe is
considered as a cluster centre, with the clusters comprised of the frames temporally closest
to the cluster centres, yielding

K
L(fi.n|six) = [ T] p(Elsw),

k=1teTy

WithZy = {¢t : |sp —t| < |si—t|, I =1---K, | # k}. Note that all the data points
(frame features) are assumed to be independent. The individual frame likelihoods are
defined as

1
p(fi|sk) ox exp [—Wd%fsk,ft)] ,

thus decreasing with an increase in the distance of the frame from the cluster centre. The
parameter o is set to reflect the width of the clusters, and a value of ¢ = 0.25 is used here.
Using this definition for the likelihood the BIC solution becomes

K
K* = arg min {; DO (e, f) + KlogN} : (6)

k=1teL

The first term generally decreases with an increase in the number of keyframes, whereas
the second increases. The optimisation of (6) is done exhaustively over the range K €
{1---0.1N}. This procdure requires the computation of the maximum likelihood keyframe
sequence ML for every possible value of K. This can be obtained using an iterative clus-
tering algorithm with a suitably chosen cost function, but would incur substantial com-
putational costs. Here the sequence resulting from the Dynamic Programming algorithm
in Section 5 is used as an approximation to the maximum likelihood keyframe sequence.
As discussed before these computations can be performed efficiently, and the approxi-
mation is adequate, since the Dynamic Programming algorithm yields maximally distinct
keyframes, which is the implicit requirement for cluster centres.

Browsing Strategy Summary

The complete browsing algorithm is summarised below.

2For notational clarity the shot index is suppressed in what follows.
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Algorithm 2: Video Browsing

Preprocessing
e Segment the video sequence into shots using the algorithm in Appendix A.
e For each shot, compute

— the individual frame utilities, using (2),
— the frame distances for all possible frame pairs, using (3), and

— the optimal number of keyframes, using (6) and Algorithm 1 to
approximate the maximum likelihood keyframe sequence.

Browsing

e The user specifies the endpoints (possibly unconstrained) and the desired
level of detail K.

e Compute the number of keyframes per shot according to (5).

e For each shot compute the required number of keyframes for browsing
using Algorithm 1.

7 Experimentes and Results

This section demonstrates the working of the proposed browsing algorithm. For the sake
of compactness and clarity a television commercial is chosen for this purpose. Com-
mercials are almost a feature length film in half a minute, being rich in transitions and
variation in shot types.

The particular commerical chosen here is summarised in Figure 1. It is comprised
of 20 shots, separated by 18 cuts and one fade. The summary was generated using the
browsing algorithm at the coarsest level of representation, i.e. only the keyframes sug-
gested by the BIC criterion are retained (¥; = K). This concise summary is useful for
indexing and retrieval. Note that the shot detection algorithm successfully located all the
transitions. Compare the 24 keyframes obtained in this manner with 24 keyframes evenly
spaced over the video sequence, as shown in Figure 2. A lot of detail is lost in parts of
the video where there is much activity, whereas prolonged parts with little activity are
over-represented.

Figure 3 shows some example results at a higher level of detail where the original
video sequence was reduced to 5% of its original length. The 40 resulting keyframes
essentially provide a fast-forwarded version of the original video, and capture all the
salient features to facilitate rapid browsing to locate areas of interest.
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Figure 1: BIC keyframesgenerated by the browsing algorithm. The video sequence is
successfully segmented into its constituting shots, shown by the red lines. The keyframes
shown are those suggested by the BIC criterion, and provides a concise summary of the
video sequence, useful for indexing and retrieval.

o ?.‘\

B g

Figure 2: Evenly spaced keyframes. With evenly spaced keyframes several of the shorter
shots are missed, and long shots are over-represented.

Figure 3: Rapid browsing. The 40 keyframes generated by reducing the video sequence
to 5% of its original length capture all the salient features, and facilitate rapid browsing
to locate areas of interest.

8 Conclusions

In this paper an algorithm was developed to facilitate rapid and efficient summarisation
and browsing of video sequences. The algorithm is non-iterative and, as illustrated in
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Section 7, allows the user to zoom in on any part or all of the video sequence to any level
of detail. It uses a feature representation for the video frames and obtains the summarising
sequence by using Dynamic Programming to maximise a utility function that assigns high
reward to subsequences of keyframes that are maximally distinct and individually carry
the most information.

To save computational costs long video sequences are first segmented into shots, after
which the algorithm is applied to each shot individually. The number of keyframes for
each shot is allocated in proportion to the minimum number of keyframes required to
summarise the shot, as determined by the BIC criterion.

Future work will focus on extending the frame utility function to give the user greater
flexibility in specifying the desired characteristics of the keyframes chosen for summari-
sation, e.g. degree and type of motion, objects and persons of interest, etc.

A Shot Detection

Most traditional methods for shot detection compute some image based inter-frame dis-
tance for consecutive frame pairs, and then label shot boundaries as those locations for
which this distance exceeds some predefined threshold. This general approach suffers
from two drawbacks. First, using only pairs of frames may lead to spurious peaks in the
distance computation. Second, a single threshold is often insufficient for detection, espe-
cially with more gradual transitions such as fades and wipes. The approach here attempts
to address these shortcomings.
For a video sequence of N frames the sequence?®

" 2WZ (s firs) + 4/ (B fi-)] s t=1--N, ™

is computed first. Instead of using only frame pairs the inter-frame distance is averaged
over a sliding window of size 2W + 1 (typically W = 2), thus reducing the effect of
spurious peaks. The outliers of the resulting sequence signify the shot boundaries. Instead
of using a single threshold, these are detected using a robust statistical procedure [4],
outlined below.

Broadly speaking the approach adopted here robustly fits the mean of a Gaussian
distribution with known variance to the sequence in (7). The outliers under this model are
then deemed candidates for the shot boundaries. Within the context of robust statistics an
estimate of the Gaussian mean can be obtained as

" —argmmm rii )
t=1

where the residual and squashing function are defined as r(z¢;p) = (z; — p)? and

#(u) = 1 — exp(—u/20?), respectively. Since ¢ is concave and increasing the opti-

misation problem can be augmented and reformulated as

N

(0", wi,y) = argmin Y [wer(ze; p) + P (w,)]
(kwi:N) =1

3The summation is suitably truncated and scaled at the endpoints.
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where ¢ (w) = ¢po ¢ ~(w) —wed ~(w). Inthe above w is a weight indicating to which
degree z; contributes towards the estimation of mean of the Gaussian distribution. The
desired estimates are easily obtained by the Iterative Reweighted Least Squares (IRLS)
procedure [4] that alternatively optimises for the mean and the weights until convergence
is achieved. Specifically, conditional on the weights the estimate of the mean becomes

N N
pr=> wiz /Y wj. ®)
t=1 t=1

Thus each sample contributes to the estimate of the mean in proportion to its weight.
Conditional on the mean a new estimate for the weights is given by

wi =6 o) e [~ohm-wP], t=1oN. @
Thus the weight w; is proportional to the probability of the sample z; under the Gaussian
distribution with mean p* and variance o2. A typical value for the variance used here is
02 = 2.5 x 1073, The weights are initialised uniformly, and the two steps in (8) and (9)
are iterated until the estimates converge.

After the estimation procedure samples with small weights represent outliers under the
Gaussian model, and hence candidates for the shot boundaries. In the final step the shot
boundaries are labelled as the peak locations of the sequence Z; = z(1 — u(w; —wrH)),
t=1.---N, where w} = (fo:l w}) 1w} is the normalised weight, v is the unit step
function, and wrg is a threshold, typically set to wrg = 0.1/N.
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