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Abstract

Methods for extracting features and classifying textures in high resolution colour im-
ages are presented. The proposed features are directional texture features obtained
from the convolution of the Walsh-Hadamard transform with different orientations of
texture patches from high resolution images, as well as simple chromatic features that
correspond to hue and saturation in the HLS colour space. We compare the perfor-
mance of these new features against Gabor transform features combined with HLS
and Lab colour space features. Multiple classifiers are employed to combine both
textural and chromatic features for better classification performance. We demonstrate
a considerable reduction in computational costs, whilst maintaining close accuracy.

1 Introduction

Scene classification using texture analysis is a prime example of a computationally ex-
pensive process where there is usually a need for trade-off between speed and accuracy.
Examples of such bartering are sometimes inherent in the nature of past works on tex-
ture analysis or less often the subject of explicit analysis [1, 2, 3, 4, 5]. The problem is
exacerbated as the size of the image under analysis increases, involving more and more
computations. Indeed, in [5] we presented a frequency space analysis of very high res-
olution images (403% 2688 pixels) aimed only at increasing the accuracy of texture
segmentation. The trade-off issue and the penalties expended by the computational costs
were not considered important, and it was found that a 6% increase in accuracy could be
achieved albeit at some considerable computational expense. Here, we show that by using
a faster approach, similar levels of accuracy can be maintained.

Past works in greylevel texture analysis have increasingly found success in the classi-
fication of texture features derived from Gabor filters [6, 7, 1, 4] or Wavelets [2, 3, 8] (to
name but a few). The discriminatory power of such features have recently been further
strengthened through the use of chromatic features based on such colour spaces as RGB,
Lab, or HLS [9, 10]. All such works have considered images of a size typically of the
order of 64x 64, 128x 128 or 256x 256 pixels.

The aim of this work is to combine texture features with colour features and apply
them to the classification of 128128 patchedrom very high resolutio®032x 2688
pixel colour image®f outdoor scenes containing roads, cars, pavements and trees. We
examine different feature sets and show a trade-off between accuracy and the speed of
computation. Our images embody the fine and coarse resolution characteristics of various
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textures, for example images of roads and pavements are particularly rich in high fre-
guency information content. Some researchers disregard the higher frequencies since the
power spectra of natural images show an exponential decay with frequency and in most
cases the image acquisition is made through a conventional optical system that filters out
the very high frequencies [11]. Nevertheless, in [5] we showed that higher frequency
information extracted from high resolution images can improve the classification perfor-
mance. It must be emphasised that in the high resolution images we have used for our
experiments, in [5] and in this paper, tloaver frequenciesvith which we are working

are close to maximum frequencies present in normal resolution images in other works,
whilst thehigher frequencieare well beyond them [5].

Here, we examine the performance of Gabor aalfeatures as a highly accurate set
for colour texture classification against a slightly less accurate but much faster set of novel
features. These new proposed features are a combination of directed textural features
extracted using the application of Walsh-Hadamard transforms (WHT) to oriented images
as well as chromatic features that correspond to, but are more easily computed than, hue
and saturation in the HLS or HSI spaces. Gabor features allow us to conveniently capture
the low to high frequencies present in the Fourier space of high resolution images. In the
same way, we are proposing a method of capturing these frequencies through the rotation
of the image by varying angles before applying the WHT. Unser [12] used Hadamard
matrices along with other local transforms such as DCT and KLT in texture measurement.
He applied different small size filters and a filter sliding scheme in the spatial domain
to evaluate the effectiveness of these filters in texture analysis. Kim and Cho [13] also
have implemented Walsh functions in a texture segmentation task using 16 differént 4
Walsh matrices as the textural feature extractors.

To compare the performance of the Gabor and WHT, along with combined chromatic
features, we perform texture classification using neural networks. Single classifiers can
lead to inefficiently trained and/or complex classifiers. Multiple classifiers are gaining
popularity and can be designed such that extra classification steps can be carried out only
when necessary. Multiple classifiers can be simply defined as when using more than one
classifier, or feature set or both, and combining their outputs by employdogrdination
Ruleto obtain the final answer. The most important motivations for using multiple classi-
fiers are the advantages gained in simplifying the complexities of classification problems
and amplification of the strengths of each individual classifier or feature set in the global
classification procedure. Cappelli et al. have used multiple classifiers in fingerprint clas-
sification [14], and Wan and Fraser have implemented them for different remote sensing
classification problems [15]. We perform our experiments using a single classifier at first
and then illustrate the improvements gained by using two different arrangements of a
multiple classifier system. In one arrangement the final decision is based on a weighted
average of two separate classifiers while in the other, a secondary classifier is only used
when we do not have enough confidence in the decision of the primary classifier. We refer
to these different combinations of classifiers a®Ws and PRLSEC. Wang et al. [16]
have shown that considerable improvement can be achieved when the feature set can be
divided into separate subsets depending on their classification power and characteristics.
This maps very well in terms of our use of textural and chromatic features.

We describe our dataset in Section 2. In Section 3, the Gabor feature set is outlined
along with the new proposed WHT features and the new chromatic features. Experimental
results are presented in Section 4 and the paper is concluded in Section 5.
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2 High Resolution Data Set

We have a dataset consisting of 724 colour image patches of 128 pixels extracted

from high resolution 4032 2688 images of outdoor scenes. In recent years, our research
group has developed a neural network based system for classifying images of typical
outdoor scenes to an area accuracy of approximately 90%[17]. Texture information is
represented in this system using Gabor filters. A common problem is that many regions
in typical outdoor scenes are too small to allow a significant range of spatial frequency to
be included in the feature set. In [5], we presented a pilot study designed to establish if
high resolution images would provide a sufficient increase in texture information to justify
the extra computational complexity. We found that a 6% increase in accuracy could be
achieved at some considerable computational expense. Here, we show that by using a
faster approach, i.e. through our proposed oriented WHT and chromatic features, similar
levels of accuracy can be attained.

Figure 1: Sixteen samples from four classes, from top-left: treel6, treel?, treel8, treel9,
road15, road12, road8, road14, pave8, pave9, pavelO, pave7, carb, car2, carl, and car8.

The images come from four categories: trees, pavements, cars, and roads (typical ex-
amples in Figure 1). These patches of high resolution images contain shiny, fairly smooth
bodies of cars (but including wheels, door-handles, lights etc., rough and coarse surfaces
of pavements, fine resolution granularity of road surfaces, and fine and coarse structures
within trees and bushes. These provide a wide range of characteristics and frequencies in
the data set. Many such frequencies are diminished or lost in lower resolution images.

3 The Features

In this section, the Gabor transform features, the proposed directional Walsh-Hadamard
features and the proposed simple chromatic features are presented and discussed.

3.1 Gabor Features

Gabor filters are widely used for multi-frequency, multi-directional analysis in image pro-
cessing. Specifically, they have shown high performance as feature extractors for texture
discrimination and unsupervised texture classification [6, 7, 1, 4, 11, 9]. The important
strength of Gabor filters is that they facilitate oriented or directional band pass filtering of
the input texture. This allows the filter to extract notable textural features which are direc-
tional and, in a frequency sense, band-limited. A basic practical disadvantage in Gabor
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filtering is their high computational costs. The Gabor filter in the frequency domain is:

B V3
—m(RP+P
G(u,v) =e T[(°>2<+°§)_e*2nj (Xoutyov) (1)

whereup = (U— wy) * cogB) + (v — wy) *sin(6) andvp = —(u— u) * Sin(B) + (v — wy) *
cog0) are the rotated/displaced coordinates in the frequency plaand wy are filter
central frequencies (modulation factors) in x and y directiénis, filter orientation pa-
rameteroy andoy are filter standard deviations in x and y directions, andndy, are
horizontal and vertical displacements in the spatial domain. We kge ,yo =0, and
setwy = wy, anday = oy in all experiments. Our Gabor filter bank contained twelve filters
arranged in 3 frequency and 4 orientation bands as,

Gij(w,8;), wi=[16,32,64], 6;=[0,45,90,135] )

3.2 WHT (Hadamard) Features

In the family of orthogonal linear transforms of time/spatial domain signals, which mostly
employ sinusoidal-based kernel functions (e.g. Fourier or cosine transforms), the Walsh
transform is defined as:

N—IN-1

W= G 5 S 1GI-DPO) ©
X0 y=

whereN is the image siz€, is the image and) determines the transform’s parametric
kernel function—1%0). The Walsh transform is one of the exceptions in this family that
implies sequency-based kernel functions and decomposes the input signal into rectangular
wave primitives in the transform domain [18]. The kernel function can be selected from

a diverse set of possibles. For instance, in the Hadamard natural transform (a member of
the Walsh family is:

m—1

W(u,v,x,y) = ; [ ()i (U) + bi(y)bi (V)] (4)

wherebi(2) is theith bit of z in binary representation. The Walsh-Hadamard form of
"digital frequency” or sequency, which is the number of zero-crossings or sign changes
of the signal, is analogous to frequency in the Fourier transform. However, sequency is
twice the size of the frequency of a signal.

As shown in Figure 2, the orthogonal set of rectangular waveforms that generate the
WHT kernel can only approximate a sinusoidal waveform by weighted summation of their
square wave elements. Hence, we expect our WHT features to be weaker representations
of the texture in comparison to those of the Gabor. Nevertheless, the WHT has important
computational advantages. For instance, it is a real transform, it only needs addition and
subtraction operations, and if the input signal is a set of integer-valued data (as in the
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case of digital images), we need only use integer operations. Furthermore, there is a fast
algorithm for Walsh transforms by simple substitution of the exponential kernel of the
Fast Fourier transform with the 1%0) kernel of Walsh. The transform matrix, usually
referred to as Hadamard, can also be saved in binary format resulting in a decrease in
memory requirements.

() = 63Cos(0.16Y) fif)= 4th(2,) + 17h(4,) + Bh(E,1)

x(t)
f(t)

Figure 2: Synthesising an example sine wave: (Left) Original sigtpE 63co90.16),
(Right) Walsh-Hadamard approximatid(t) = 41h(2,t) + 17h(4,t) + 8n(8,t).

We used asequency-ordered Hadamandatrix [18] where the rows (and columns)
are ordered according to their sequency, i.e. in the first row there are no sign changes, and
in then'™™ row there aren-1, e.g. see Figure 3(left). The 2D Walsh-Hadamard transform
can be defined a4 HT(l) =H.I.H' wherel is the image anti andH’ are the Hadamard
matrix and its transpose. Note that for a Hadamard méatrixH’. Figure 3(right) shows
the sequency space of the sequency-ordered transform and its bands.
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Figure 3: (Left) Sequency-ordereck8 Hadamard, (Right) Sequencies in WHT domain

We generaterientedHadamard based features to represent the directionality of tex-
ture in the same manner of Gabor features. In this scheme, the Hadamard matrix remains
constant but the image functionrigatedby o = 0°,45°,90°,135°. The rotation is applied
to each element in the top row of the image matrix. At border pixels corresponding ele-
ments are used from a repeated imaginary version of the same image matrix. For example,
in the simple 4x 4 image matrix below, a £5otation at positiorb gives{b, g,l,m} (also
seeAys in equation (6)) and a 135otation at same positidmgives{b, e, 1,0} (similarly

seeA3s in (6):
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The full rotation set wherer = 0°,45°,90°,135 can be defined for a simple>d4
image matrix as follows:

a b c d a f k p a e | a h k n
_|le f g h _|b g I m b f j n _|b e I o
A0°‘ijk|A“5°‘chinA9°°‘cg|<oA135"cf|p

m n o d e j o d h I p d g m

(6)
Note that this is not an ordinary geometrical rotation. For example, we create the rows
of the Ay5- image by considering the pixels that sit in & 4brection in imageAs and so
on. This means that the resulting horizontal rows capture the information at the specified
angles.

Of course we extend this concept to 12828 images in this work. The artifacts of
repetition at the borders are much less significant with larger images than those in the ex-
amples above. The manner of aatationsmeans that after the WHT transformation we
need only extract features faaw sequency information ontporresponding to the direc-
tions used. This reduces tiéHT(Ay) =H.A4.H’, to a more simplified transform where
WHT(Aq) = As.H’ and we can ignore, without loss, the column sequency information.
Indeed, this takes out the redundancy created by the facA@hatA;Oo andH =H’. From
each transformed matrix, the maximum value, the mean and the standard deviation were
computed resulting in a set of 12 WHT features.

The relative arrangement of pixels is of importance in texture analysis, for example in
cooccurrence matrices. Similarly, sequency based features which represent the number of
zero-crossings of pixels in a particular direction can convey a notable amount of textural
information. We can measure the WHT energyWfHT(Aq) = Aq.H' as the absolute
value of the WHT output along each column. For example, as Figure 4 depicts, the
sequency representation of a typical fine resolution texture will show more energy in
higher sequency bands compared to a coarse resolution texture. The rightmost graph in
Figure 4 also illustrates the lack of response of the WHT transform to the coarse vertical
texture when it is rotated (89 ). One main advantage of the proposed Hadamard based
feature extraction scheme is that by using £288 Hadamard matrices, rather than the
usual 3x 3in[12] or 4x 4 in [13], we can extract higher frequency/sequency information.
This is easily facilitated by our use of higher resolution images.
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Figure 4: From Left - Example average energies for fine resolution texture, coarse reso-
lution texture, and coarse resolution texture &t @dation.
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3.3 Chromatic Feature Extractors

In [10], the authors applied Gabor filtering to each R, G, and B band to obtddur

Gabor features. Here we perform our Gabor or Hadamard transforms on greylevel images
and add separate chromatic features for the classification stage. This is appropriate since
each image patch will be classified as whole. We define a pool of colour features obtained
from Laband HLS spaces and use them in our experiments to decide which colour space
performs best given the speed v. accuracy tradeoff issue we are concerned with here.

For the Lab space, we use the megrand standard deviatiom of the chromaticity
bandsa andb in each image patch. In the HLS space, the mean and standard deviation of
the hue and saturation bands are used. Additionally, we define two new pseudo-hue and
pseudo-saturation featurelg andS, which are much faster to compute:

% if Ris Maximum
Hp={ 2%  if Gis Maximum $=MaxR G,B) - =52 (7)
B+(2x259)  if Bis Maximum

¥

Hp is a mapping from RGB to a hue-like value, where max(R,G,B) will be mapped to an
appropriatc—% division of the possible range [0,25%, measures the difference between
the maximum value and average of a colour. fiteado of Hp andS, in an image patch
provide an adequate indication of its main colour and extent of variation.

4 Classification Experiments

Our experiments consist of classifying our images using Gabor only, Gabor with colour
features, Hadamard only, and Hadamard with colour features. The initial tests were based
on a single classifier, and then we used multiple classifiers and investigated the influence
of the texture features against the colour features in the classification task.

We divided our 724 images into a training set of 396, a test set of 160 and a validation
set of 168 patches. For classification, we employed a back-propagation neural network
with one hidden layer, optimised for the best number of nodes. To evaluate classification
performance, we used the Mean Square Error, MSE, as the difference between the ground
truth G (i.e. theexpectedoutputs of classifiers), and the network classificatib(i.e.
theactualoutputs of the classifiers) acroNsclasses (herbl = 4). A second metric, the
Classification AccuracyCA, was evaluated as the percentage of correct class assignments
across the complete labelled test set. MSE and CA are therefore defined as:

Y (C o) _ No. of correct class assignments
MSE=&£5=— — = . 1
S N c Total no. of samples (i.e. 160f< 0 ®

In the first experiment, the Gabor features performed better than the WHT features
as expected with MSE errors 0.181 and 0.234 respectively (see rows 1 and 2 in Table 1).
However, the performance of the WHT features were still very respectable in comparison.
Next, we classified using only the features from our different colour spaces to determine
their power of discrimination. The results were good (rows 3 to 5 in Table 1) since our
classes of objects are fairly distinguished anyway. However, pavements and roads, and
cars and trees (in various seasons), can have similar colours and colour features alone is
not enough. Thab features performed best while the new simptgS, features were
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better than the norm#él Sfeatures. We then combined our texture features with the colour
features, the results for which are shown in rows 6 to 11 in Table 1. These were found to be
all very close to each other with the best result in each texture category being GigBgr+

and WHT+HS;, features.

Test Test No. of Performance
No. Features | Features|| MSE | NI | CA%
1 | Gabor 12 0.181| 18 | 88.7%
2 | WHT 12 0.234 | 26 | 83.7%
3| ab 4 0.119| 13 | 91.9%
4 | HS 4 0.172 | 17 | 89.4%
5| HpS 4 0.143| 15 | 90.7%
6 | Gabor +ab 16 0.097 | 11 | 93.1%
7 | Gabor +HS 16 0.103 | 12 | 92.5%
8 | Gabor +HpS, 16 0.083 | 10 | 93.7%
9 | WHT +ab 16 0.105| 12 | 92.5%
10 | WHT + HS 16 0.117 | 12 | 92.5%
11 | WHT + HpS, 16 0.094 | 11| 93.1%

Table 1: Single classifier results: for all colour spaces above, the featurep enede of
each colour band used. NI is the number of incorrect classifications out of 160 images.

Feature Extraction || Gabor| WHT | ab | HS | HySp
Time in msec 2.75 | 0.24] 0.30| 0.73| 0.05

Table 2: Average execution times for the various feature extraction methods.

Table 2 shows the average time in milliseconds, on a Pentium IlI-700 MHz PC, re-
quired to compute each set of features. Clearly, WHT features are more than 10 times
faster than Gabor features, whhgS; are also significantly faster than baib andHS
features. The results demonstrate that the WHT features can achieve very similar per-
formance to Gabor features at a fraction of the computational costs. In the next set of
experiments, we increase the classification accuracy by using multiple classifiers.

We used a multiple classifier system consisting of two individual classifiers, one for
the textural features and one for the chromatic features. Their outputs were combined
through acombine moduléo make a final decision. Tweombination algorithmsvere
considered. In the first, WG , an unknown input sample was presented to both clas-
sifiers. Having obtained the respective responses, the combine module computed their
weighted average, using two weighting factors calgdndk, = 1—k;, and then selected
the class with the minimum MSE. In the second, BFC, a primary/secondary scheme
was applied in which the chromatic classifier was used as the main primary classifier due
to its relative higher classification accuracy as already shown in Table 1. If this classifier
was certain of its classification (i.e. the primary classifier's MSE was less than a cer-
tain threshold,), then the secondary classifier was not used. Otherwise, the secondary
textural classifier was deployed to aid in the final classification if it demonstrated high
certainty in its decision (i.e. if the secondary MSE was less than another thregjjold,
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If the secondary classifier did not demonstrate high certainty, then the primary classifier’s
decision is accepted anyway as the final classification. All other conditions were the same
as with the previous experiments. To determine the optimum valués féf andd, a

linear search of these parameter spaces was carried out by measuring the classification
performance on a validation set of 168 samples. In our experiments, the parameter space
was [Q 1] for kq (andk, = 1—k;), and [Q0.5] for &; andd,.

WAVG PRI_SEC
[ Test Features]| MSE | NI | CA% || MSE | NI | CA%
ab+ Gabor [[ 0.076] 6 | 96.3% ] 0.068] 6 | 96.3%
HS+ Gabor || 0.084] 10 | 93.8% | 0.085| 9 | 94.4%
HpSp + Gabor | 0.081] 8 | 95.0% 0.073| 8 | 95.0%
ab+WHT [ 0.079] 10 | 93.8%] 0.090] 9 | 94.4%
HS+WHT | 0.101] 12 | 92.5% 0.124] 13 | 91.9%
HpSp *WHT || 0.089| 9 | 94.4%] 0.089| 8 | 95.0%

Table 3: Multiple classification results for both WG and PRLSEC schemes. (colour
features are stated first since they carry larger weight)

All combinations of textural and chromatic feature sets were applied to measure their
classification performance. Table 3 shows the results for ba#W@® and PRLSEC
schemes. In comparison to the single classifier there is a marginal drop in accuracy with
the WHT+HSfeatures at 91.9% (down from 92.5% with a single classifier) but most sig-
nificantly there is an increase in accuracy in every other case. The best performance is by
the Gaborabfeatures at 96.3% (up from 93.1%) since they capture the texture character-
istics more powerfully. However, as before, the WH;&, feature set follow extremely
closely at 95.0% (up also from 93.1%) in the PREC scheme and, as shown earlier in
Table 1, they are much faster to compute. The overall performance of thE P&imul-
tiple classifier is slightly better than the WG scheme. The PRSEC classifier allows a
suitable combination rule as a way of giving primary importance to the chromatic features
since they perform better than the texture features on their own. However, since the linear
search of the parameter spacelpalso gives a better weighting to the chromatic features
in the WAVG scheme the results between the two classification schemes are very close.

5 Conclusion

We described novel and faster methods for extraction of both directional texture features
using the Walsh-Hadamard transform and simplified hue and saturation-like chromatic
features. The methods were applied to high resolution outdoor scenes for colour texture
classification. The WHT concept of sequency captures the lower and higher frequencies
present in high resolution images very well. The performance of the proposed features
were compared, for accuracy and speed, against Gabor and ath®&htures using both
single and multiple classifiers. The multiple classification framework showed improve-
ments in accuracy in all cases when texture features were combineddththe new
proposed chromatic featurefS,. Furthermore, we demonstrated that the performance
of the new features are highly comparable at a massively reduced computational cost.
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Although high resolution images of outdoor scenes have been of interest in the frame-
work of our experiments here, in future tests the proposed methods will be applied on a
more standard texture test suite such as Vistex to implement a more reliable comparison
with other texture analysis schemes.
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