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Abstract

In this paper we show how the Mumford-Shah functional can be used to de-
rive diffusion kernels that can be employed in the recovery of surface height
in shape-from-shading. We commence from an initial field of surface nor-
mals which are constrained to fall on the Lambertian reflectance cone and to
point in the direction of the local Canny edge gradient. We aim to find a path
through this field of surface normals which can be used for surface height
reconstruction. We demonstrate that the Mumford-Shah functional leads to
a diffusion process which is a Markov chain on the field of surface normals.
Moreover, the diffusion kernel for the Markov process depends on the rate of
change of surface normal direction. As a result, we can find the steady state
of the Markov chain using the leading eigenvector for the transition proba-
bility matrix computed from the diffusion kernels. We show how the steady
state path can be used for height recovery and also for smoothing the initial
field of surface normals.

1 Introduction
Shape-from-shading is a process which allows surface shape to be recovered from shad-
ing variations using the physics of light. Unfortunately the problem is an ill-posed one [1]
since at each image location it requires the two degrees of freedom of the surface normal,
i.e. the local slant and tilt angles of a surface, to be recovered from a single measured
brightness value. To overcome this problem the process is frequently posed in a varia-
tional setting, in which the goal is to find the field of surface normals so as to minimise a
regularised energy functional [2].

The main problem with this approach is that the smoothness constraints tend to dom-
inate the data-closeness constraints, resulting in a recovered field of surface normals that
is devoid of fine surface detail. To overcome this problem, Worthington and Hancock
[3] have recently developed a new geometric framework for shape-from-shading. Data-
closeness is guaranteed by constraining the surface normals to fall on the local irradiance
cone defined by Lamberts law. That is to say they must reside on a cone whose axis is
the light source direction and whose opening angle is the inverse cosine of the measured
image intensity.

Although effective, this new framework leaves considerable scope for further devel-
opment. In particular, it is concerned with the recovery of fields of surface normals and
does not address the problem of recovering surface height. In this paper our aim is to
develop a height recovery method in which the surface normals are constrained to fall on�
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the Lambertian reflectance cone. We pose the height recovery process as that of finding
an integration path through a field of surface normals which satisfy Lambert’s equation.
Our starting point is the Mumford-Shah functional [4]. This introduces penalties asso-
ciated with curve length and total squared curvature of the path. The required curvature
may be computed from the change in surface normal direction between locations on the
image plane. We use the Mumford-Shah energy to define a probability distribution for
the integration path. We demonstrate that this is a Markov chain on the sites of the field
of surface normals. The diffusion kernels for the Markov chain hence depend on the sec-
tional curvature associated with the trace of the integration path on the surface. We make
use of the Markov property and develop a graph-spectral method for recovering an inte-
gration path for surface height recovery. To do this we borrow ideas from spectral graph
theory concerning random walks on graphs [5, 6, 7]. The steady state random walk on
the graph can be located by finding the leading eigenvector of the associated transition
probability matrix. Moreover, the eigenstructure of the transition matrix also allows us to
locate surface patches.

We use this property to find a curvature minimizing path across the field of available
surface normals associated with each surface patch. We adjust the initial field of surface
normals by traversing these paths and adjusting the surface normal direction. Each surface
normal is rotated on the cone so that it points in the direction of minimum curvature
along the path. This approach offers a number of advantages. First, we avoid smoothing
across patch boundaries. Second, smoothing only proceeds in the direction of minimum
curvature, and is hence regulated. Third, the propagation process is less computationally
demanding since it is uni-dimensional.

2 Lambertian Reflectance
In the case of Lambertian reflectance from a matte surface of constant albedo illuminated
with a single point light-source, the observed intensity is independent of the viewing
direction. The observed intensity depends only on the quantity of absorbed light, and
this in turn is proportional to the cosine of the incidence angle. Suppose that �� is the
unit-vector in the direction of the light source and that ���� is the unit-vector in the surface
normal direction at the pixel 	 . According to Lambert’s law, the observed image intensity
at the pixel indexed 	 is 
 ��� ��
��� �� .

Lambert’s equation provides insufficient information to uniquely determine the sur-
face normal direction. However, as recently observed by Worthington and Hancock [3],
the equation does have a simple geometric interpretation which can be used to constrain
the direction of the surface normal. The equation specifies that the surface normal must
fall on the surface of a right-cone whose axis is aligned in the light-source direction �� and
whose apex angle is ��������������

� .

Worthington and Hancock [3] exploit this property to develop a two-step iterative pro-
cess for SFS. The process commences from a configuration in which the surface normals
are placed on the position on the irradiance cone where their projections onto the image
plane are aligned in the direction of the local (Canny) image gradient.

3 Diffusion Kernels
Stated formally, our goal is the recovery of height information from the field of surface
normals. ¿From a computational standpoint the aim is to find a path along which simple
trigonometry may be applied to increment the estimated height function. To be more
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formal suppose that the surface under study is � and that the field of surface normals is
sampled on the plane � . Our aim here is to find a curve  across the plane � that can
be used as an integration path to reconstruct the height-function of the surface � . The
projection of the curve  onto the surface � is denoted by  "! . Further, suppose that #��%$&�
is the sectional curvature of the curve  '! at the point ( with parametric co-ordinate $ .
We seek the path  )! that minimises the Mumford-Shah [4] functional* �% �!+� �-,/.10�2"35476 #8�9$&�;:=<)>/$ (1)

where
3

and
6

are constants. The probability of the path can be written as ? . 0 �@�ACB8DFE * �% �!+�HG .
The field of unit surface normals for the surface � on the plane � is denoted by �� .

Accordingly, and following do Carmo [8], we let I8JK�9�L� represent the tangent plane to
the surface � at the point ( which belongs to the curve  ! . To compute the sectional cur-
vature #��%$&� we require the differential of the surface or Hessian matrix >M�� JON1IPJK�%�L�RQI J �%�S� . The maximum and minimum eigenvalues TVU and T : of >W�� J are the principal
curvatures at the point ( . The corresponding eigenvectors �X UZY[I J �%�L� and �X : Y[I J �9�L�
form an orthogonal basis on the tangent plane I8JK�9�L� . At the point ( the unit normal
vector to the curve  is �\ . and the unit tangent vector is ]^J_Y`IPJK�%�L� . The sectional
curvature of  at ( is given by#��%$&� � � �];Jba �X U � : �%T U E T : � 4 T :�\ . a��� J (2)

where � �];Jba �X U � : �%T U E T : � 4 T : is the normal curvature and c � �d�e������� �\ . af�� J is the angle
between the curve normal and the surface normal.

In practice, we will be dealing with points which are positioned at discrete positions on
the pixel lattice. Suppose that 	 and g are the pixel indices of neighbouring points sampled
on the pixel lattice along the path  '! . With this discrete notation, the path energy and its
probability are given by* �% ! � � hi ��j kmlHn . 0 2 3o4p6 #=:��jk < $ ��j k and ? .10 � qi ��j kmlHn . 0 @�ACBZrsE 2 3o4p6 #f:��jk < $ �tj k�u (3)

where # ��j k is an estimate of the curvature based on the surface normal directions at the
pixel locations 	 and g , and $ ��j k is the path distance between these points. Hence, we
can view the integration path  as Markov chain across the field of surface normals. The
diffusion kernel for the process, i.e. probability of migrating between sites 	 and g isvw� @�ACB8DFE * ��j k G � @�ACB r E 2)3o4p6 # :��j k <"$ ��j k u (4)

In order to compute the path curvature appearing in the diffusion kernel, we make use
of the surface normal directions. To commence, we note that x # �tj k x � UyPz|{ } where ~ ��j k
is the radius of the local circular approximation to the integration curve on the surface.
Suppose that the surface normal directions at the pixel locations 	 and g are respectively�� � and �� k . The approximating circle connects the points 	 and g , and has the path segment
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$ �tj k as the connecting chord. The change in direction of the radius vector of the circle is� �tj k � �d�e�������M�� � af�� k and hence ���1� � ��j k � �� � a��� k . If the angle
� �tj k

is small, then we

can make the Maclaurin approximation ����� � ��j k���� E����zt{ }: � �� � af�� k . Moreover, the
small angle approximation to the radius of curvature of the circle is ~ ��j k ��� z|{ }� z|{ } . Hence,# :�tj k � :� �zt{ } i U�����)z9� ��8} l . As a result, we find that the cost associated with the step from the

pixel 	 to the pixel g is
* �tj k ��3 $ �tj k 4 :;�� zt{ } � � E �� � a+�� k � . The total cost associated with the

integration path  ! is hence* .10 ��3)� ./0 4 hi ��j kmlHn .10[� 6$ ��j k � � E �� � a �� k � (5)

where
� ./0

is the length of the path. Hence, the integration path is a form of elastica which
attempts to find an energy minimising path through the surface normals. The energy func-
tion is a variant of the Mumford-Shah functional. It has two terms. The first encourages
the integration path to be one of minimum length. The second term encourages a path
which minimises the total change in surface normal direction. There are clearly a number
of ways in which the energy can be minimised. However, here we choose to make use of
the fact that from Equation 6 it is clear that the energy function specifies a Markov chain
on the sites of the Gauss map. In other words, the path can be viewed as a diffusion on
the Gauss map. The steady state random walk for this diffusion can be found by locating
the leading eigenvector of the transition probability matrix for the Markov chain.

To persue the graph-spectral analysis of the Gauss map, we require a transition prob-
ability matrix. For the pixels indexed 	 and g we commence by computing the weight� ��j k ��� @�A/B�D�E * ��j k G if g�Y�� ��

otherwise
(6)

where � � is the set of pixels-neighbours of the pixel 	 . Hence, the curvature weight is
only non-zero if pixels abut one-another.

From the curvature dependant weights, we construct a transition probability matrix in
which the upper diagonal elements sum to unity. The element in the row indexed 	 and
column indexed g is ?��Fg��m	s� � ?��t	e�Hg1� � � �tj k��� ���=�S� F¡ Um¢   n � ��� ���=�£�¤�¡V  ¢ ¤ n � � ¤ j   (7)

In next section, we describe how the leading eigenvector of this matrix can be used to
determine steady state random walk for the Markov chain and how this path may be used
for the purposes of surface integration.

4 Random Walks and Markov Random Chains
The set of pixel sites can be viewed as a weighted graph ¥ � �9¦L��
��m?§� with index-set¦ and edge-set 
 �©¨ ��	e�9g/��xF�t	e�9g/�ªY-¦_«�¦L�m	­¬� g=® . The off-diagonal elements of the
transition probability matrix ? are the weights associated with the edges. In this paper,
we exploit a graph-spectral property of the transition matrix ? to develop a surface height
recovery method. This requires that we have the eigenvalues and eigenvectors of the
matrix ? to hand. To find the eigenvectors of the transition probability matrix, ? , we first
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solve polynomial equation x ? E T=¯�x � �
. The unit eigenvector �°f� associated with the

eigenvalue T � is found by solving the system of linear equations ? �°+� � T � �°+� and satisfies
the condition �°+±� �° � �

.

Figure 1: Geometrical meaning of the nor-
mal correcting step.

Consider a random walk on the graph ¥ .
The walk commences at the node gdU and pro-
ceeds via the sequence of edge-connected nodes �²¨ g³U&�Hg : �9gµ´���a¶aFaF® where �Fg � �Hg � �PU��bYM
 . Sup-
pose that the transition probability associated
with the move between the nodes g   and gµ·
is ?��%¸;�^¹M� . If the random walk can be repre-
sented by a Markov chain, then the probability
of visiting the nodes in the sequence above is? . 0 � ?��Fg³U��fº � �S� F¡ U ?��Fg  �» U³�Hg   � . This Markov
chain can be represented using the transition
probability matrix ? whose element with row¸ and column ¹ is ?��%¸;�^¹M� . Further, let (§¼e��	;�
be the probability of visiting the node indexed	 after t-steps of the random walk and let ( ¼ ��%( ¼ � � ����( ¼ � � ����aFa¶a � ± be the vector of probabili-
ties. After ] time steps ( ¼ � ��? ± � ¼ (¾½ . If T �
are the eigenvalues of ? and �°+� are the corresponding eigenvectors of unit length, then? � � � �£�� ¡ U T � �° � �° ±� . As a result, after ] applications of the Markov transition probability

matrix ? ¼ � � � �L�� ¡ U T ¼ � �°+� �° ±� . If the row and columns of the matrix ? sum to unity, thenT U � �
. Furthermore, from spectral graph theory [6] provided that the graph ¥ is not a

bipartite graph, then the smallest eigenvalue T � �S�'¿ E � . As a result, when the Markov
chain approaches its steady state, i.e. ]"QÁÀ , then all but the first term in the above series
become negligible. Hence, ÂFÃ¶Ä ¼�Å
Æ ? ¼ � �° U��° ± U . This establishes that the leading eigen-
vector of the transition probability matrix is the steady state of the Markov chain. For a
more complete proof of this result see the book by Varga [9] or the review of Lovasz [5].
As a result, if we visit the nodes of the graph in the order defined by the magnitudes of the
co-efficients of the leading eigenvector of the transition probability matrix, then the path
is the steady state Markov chain. In this paper we aim to perform surface height recovery
by co-joining pixel sites pixel sites along the path specified by the magnitude order of the
components of the leading eigenvector.

Suppose that the leading eigenvector for the transition probability matrix is denoted
by �°PÇ � � °PÇ � � ����a¶aFa¶aFa¶� °PÇ �mx ¦­x �^� ± . Our aim is to use the sequence of nodes defined by
the rank order of the magnitudes of the components of the leading eigenvector to define
an integration path through the set of pixel sites. The pixel path defined by the rank
order of the co-efficients of the leading eigenvector is given by the list of sorted node-
indices  � �¶g U �Hg : �9g ´ ��a¶aFa¶aF�Hg � �S� � where

°PÇ �Fg U � ¿ °PÇ �Fg : � ¿ °PÇ �¶g ´ � ¿ aFa¶a ¿ °PÇ �¶g � �L� � . The
subscript \ of the pixel with node-index g&ÈWYÉ¦ is hence the rank-order of the eigenvector
component

°VÇ �¶gµÈ=� .
5 Extracting Patches
In practice the surface under study may have a patch structure. The patches may be identi-
fied by finding the blocks of the transition probability matrix induced under a permutation
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of the nodes. We commence by constructing the thresholded transition probability matrixÊ
whose elements are defined as followsÊ �t	e�Hg1� � 2 �

if ?���	e�9g/��ËZË �?��t	e�9g/� otherwise
(8)

Suppose that there are ¹ distinct surface patches, each associated with an adjacency ma-
trix Ì i �¶l . If Í represents a noise matrix, then the relationship between the observed
transition matrix

Ê
and the underlying block-structured transition matrix is

Ê � Ì 4 Í
where Ì �ÏÎ ÌÑÐ Î ± ,

Î
is a permutation matrix and Ì¾Ð � >�	sÒ�Ó��%Ì i U l �mÌ i : l ��aFa¶�mÌ i �¶l aFa¶aÔ� is

a block diagonal matrix in which Ì i �Fl is the subblock corresponding to the patch indexed	 . To recover the matrix Ì Ð , we turn to the eigenvector expansion of the matrix
Ê

and
write Ê � �Õ Ç �Õ ± Ç 4 � �£�h � ¡ : T � �Õ�� �Õ ±� (9)

where the leading eigenvalue is unity i.e. T U � �
, �Õ Ç is the leading eigenvector and the

eigenvectors are normalised to be of unit length, i.e. x �Õ�� x � �
. To identify the patches,

we use the following iterative procedure. We initialise the algorithm by letting
Ê i U l � Ê .

Further suppose that �Õ i U lÇ is the leading eigenvector of
Ê i U l . The matrix Ì i U l � �Õ i U lÇ �Õ i U l ±Ç

represents the first block of
Ê

. The nodes with non-zero entries belong to the patch.
These nodes may be identified and removed from further consideration. To do this we
compute the residual transition matrix

Ê i : l � Ê i U l E Ì i U l in which the elements of the
first patch are nulled. The leading eigenvector �Õ i : lÇ of the residual transition matrix

Ê i : l
is used to compute the second block Ì i : l � �Õ i : lÇ �Õ i : l ±Ç . The process is repeated iteratively
to identify all of the principal blocks of

Ê
. At iteration \ , �Õ i È lÇ is the leading eigenvector

of the residual transition probability matrix
Ê i È l , and the \ ¼�Ö block is Ì i È l � �Õ i È lÇ �Õ i È l ±Ç .

The index set of the patch indexed \ is the set of nodes for which the components of
the leading eigenvector �Õ i È lÇ are non-zero. Hence, the index-set for the 	 ¼�Ö patch is � �S�¨&× x �Õ i �FlÇ � × �5¬� � ® . It is important to stress that the patches are non-overlapping, i.e. the
inner product of the block eigenvectors for different patches is zero �Õ i ¤ lÇ a��Õ i   lÇ � �

, where× ¬� ¸ .
6 Normal Correction and Height Recovery
Our surface height recovery algorithm proceeds along the sequence of pixel sites defined
by the order of the co-efficients of the leading eigenvector associated with the separate
patches. For the

× ¼�Ö patch, the path is  ¤ � �Fg U¤ �9g :¤ �Hg ´¤ ��a¶a¶aFa¶��� where the order of the
co-efficients of the leading eigenvector for this patch is such that

°�Ç¤ �Fg U¤ � ¿ °PÇ¤ �Fg :¤ � ¿°PÇ¤ �Fg ´¤ � ¿ a¶a¶a . As we move from pixel-site to pixel-site defined by this path we perform
two computations. First, we adjust the position of the surface normals on the irradiance
cone so that they are smoothed in the local direction of minimum curvature. Second, we
recover the surface from the Gauss map by incrementing the height function using the
local slope parameters. At step \ of the algorithm, we make a transition from the pixel
with path-index g È �PU to the pixel with path-index g È . To perform smoothing and height
recovery, we make use of the surface normals �� kHØ and �� kHØdÙ1Ú at the two pixel-sites.

Turning our attention first to the smoothing process, our aim is to adjust the surface
normal directions so that they are consistent with the direction of the curvature minimis-
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Figure 2: Ground-truth, needlemaps, error plots and surface-height recovery results for four basic
shapes under noise-controlled conditions.

ing integration path and also remain on their respective irradiance cone. We therefore
parameterise the surface normal directions using two angles. The first of these is the polar
angle

� kHØ
between the surface normal and the light source direction. This is simply the

opening angle of the irradiance cone, and this angle must be kept fixed in order to ensure
that the recovered surface normal satisfies Lambert’s law. The second is the azimuthal
angle Û kHØ , which measures the position of the surface normal on the irradiance cone. The
angles Û kHØ and

� kHØ
can be defined in terms of the surface normal components. Using
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some simple trigonometry we can write

Û k Ø �ÝÜÞ ß �dà E �d�e������� ���} Ø iFá ly } Ø if ��Zk Ø ��âC����������1� ��8} Ø iFá ly�} Ø otherwise ã � k Ø � �d�e�����1���S��Zk Ø �%ä1�m�
where ~ k Ø is the projection of the surface normal ��Zk Ø onto the image plane given by~ kHØ � �mÃFå����d�e�������M�� kHØ ��ä/�^� .

These angles are adjusted in the smoothing step. This smoothing step uses the follow-
ing equations to update the tilt and azimuthal angles of the surface normalsÛ)æ kHØ � Û k Ø � � Eèç k Ø � 4 Û k Ø³Ù1Ú ç k Ø ã � æ k Ø � � k Ø
where ç kHØ is a weight which measures the consistency of the surface normal directions
with the direction of the curvature minimising path and Û æ k Ø � � æ kHØ are the updated an-
gles. For the smoothing step, we make use of the thresholded change in surface normal
direction é � ksØ � 2 x �� ksØ E �� kHØ³Ù1Ú x if x �� ksØ E �� ksØ³Ù1Ú x�êìë�

otherwise
(10)

where the threshold ë is a constant that has been found empirically to have
� aÔí as its

optimum value. We compute the smoothing weight ç k Ø using the hyperbolic tangent
function as suggested by robust statistics and as used by Worthington and Hancock in
their work on needle-map smoothing. The weight is given byç kHØ � ��ÂF��î£�����mïV�mx³Û kHØ E Û kHØdÙ1Ú x é � kHØ �m� : (11)

and takes the product of the change in azimuthal angle and surface normal direction as
its arguement. Once the updated angles have been computed, then the surface normals
may be updated using the equation �� ækHØ � �%~ ksØ �����ðÛ æ kHØ ��~ ksØ �^Ã¶åKÛ æ ksØ �m����� � æ kHØ � ± . With
the smoothed surface normals to hand, we can compute the height increment. Using
the trapezium rule the increment may be computed using the components of the surface
normals and is given by ñ È ��> È� 2 �� æ k Ø �tò���� æ kHØ ��âC� 4 �� kHØdÙ1Ú �tò���� ksØ³Ù1Ú ��âð� < (12)

where > È is the Euclidean distance on the x-y plane between the two pixel sites associated
with the \ th transition. If the height-function is initialised by setting ä kHó�� �

, then the
centre-height for the pixel with path-index g È is ä k Ø�ô/Ú � ä k Ø 4 ñ È . We merge abutting
patches by assuring they have the same mean boundary height.

7 Experiments
The experimental evaluation of the new surface reconstruction method is divided into two
parts. We commence with a sensitivity study aimed at evaluating the method on synthetic
data. In the second part of the study, we focus on real-world data.
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7.1 Synthetic Data
In this section we provide some experiments on synthetic data. The aim here is to deter-
mine the accuracy of the surface reconstruction method. To this end we have generated
synthetic surfaces. From the surfaces, we have computed the field of surface normal direc-
tions. We have then applied the graph-spectral method to the 2D field of surface normals
to recover an estimate of the surface height.
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Figure 3: Error versus variance

In Figure 2 we show the results
obtained for a series of different sur-
faces under conditions of controlled
noise. To do this we have added ran-
dom measurement errors to the sur-
face height. The measurement er-
rors have been sampled from a Gaus-
sian distribution with zero mean and
known variance. In the top row
we show the original noise-free syn-
thetic surface, i.e. ground-truth. In
the second row of the figure we show
the field of surface normals for the
noise-free surface. The third row shows the surface reconstructed from the field of sur-
face normals when no Gaussian noise has been added. The fourth row shows the absolute
error between the ground-truth and reconstructed surface height. From left-to-right the
surfaces studied are a dome, a sharp ridge, a torus and a volcano. In all four cases the sur-
face reconstructions are qualitatively good. For the dome the height errors are greater at
the edges of the surface where the slope is largest. In the case of the ridge, there are errors
at the crest. For the volcano, there are some problems with the recovery of the correct
depth of the “caldera”, i.e. the depression in the centre. For the reconstructed surfaces,
the relative mean-squared errors are 5.6% for the dome, 10.8% for the ridge, 7.8% for the
torus and 4.7% for the volcano. Hence, the method seems to have greater difficulty for
surfaces containing sharp creases.
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Figure 4: Results of the surface integration process.

In the fifth row of Figure 2 we
show the field of surface normals for
the noise-corrupted surface. In the
sixth row, we show the result of re-
constructing the surfaces shown in
the top row, when random height er-
rors have been added. The seventh
, i.e. bottom, row shows the dif-
ference between the height of the
surface reconstructed from the noisy
surface normals and the ground-truth
height function. In the case of all
four surfaces, the gross structure is
maintained. However, the recov-
ered height is clearly noisy. The
height difference plots are relatively
unstructured. These are important
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observations. They mean that our graph-spectral method simply transfers errors in surface
normal direction into errors in height, without producing structural noise artifacts.

To investigate the effect of noise further, Figure 4 we plot the mean-squared error
for the reconstructed surface height as a function of the standard deviation of the added
Gaussian noise. From the plots for the different surfaces shown in Figure 3, it is clear that
the mean-squared error grows slowly with increasing noise standard deviation.

7.2 Real World Experiments
We have performed experiments using real world imagery. The images used in our study
have been selected because they have proved problematic when conventional shape-from-
shading algorithms are used. In the top panel of Figure 4 we show the three gray-scale
images studied. These are a wooden block, an urn handle and a marble toe. The wooden
block image illustrates the usefulness of the new method when dealing with ambiguous
initial normal estimates (i.e. the planar faces of the block) while the other two images
show the ability of the new method for smoothing on the minimum curvature direction
keeping patch boundaries fixed. In the second row, we show the final needle-maps. The
smoothing process improves the quality of the field of surface normals, but does not over-
smooth across the patch boundaries. In the third row, we show the surfaces reconstructed
from the smoothed fields of surface normals. It is evident that the smoothing process leads
to surfaces which are in good subjective agreement with the image contents.

8 Conclusions
In this paper, we have described a graph-spectral algorithm shape-from-shading. The
method commences from an initial surface normal estimate and performs smoothing
along a curvature minimising path defined by the leading eigenvector of a curvature-based
transition probability matrix. By traversing this path and applying some simple trigonom-
etry we reconstruct the surface height function. Results on real world images reveal that
the method is able to deliver accurate height reconstructions for complex surfaces.
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