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Abstract

We frame the problem of object recognition from edge cues in terms of deter-
mining whether individual edge pixels belong to the target object or to clutter,
based on the configuration of edges in their vicinity. A classifier solves this
problem by computing sparse, localized edge features at image locations de-
termined at training time. In order to save computation and solve the aperture
problem, we apply a cascade of these classifiers to the image, each of which
computes edge features over larger image regions than its predecessors. Ex-
periments apply this approach to the recognition of real objects with holes
and wiry components in cluttered scenes under arbitrary out-of-image-plane
rotation. 1

1 Introduction

Over the past 10 years, significant progress has been made toward the recognition of real,
complex objects in cluttered scenes. There are now object recognition systems whose
detection and false alarm rates are encouraging for real-world applications[29]; recently
a real-time detector with comparable performance has even emerged[32]. The most com-
mon target object searched for is the human face, but in principle these systems could be
trained to detect any of a variety of objects including cars and buildings.

Many of these approaches formalize the recognition problem as one of modeling the
appearance of a rectangular image patch circumscribing the object, across changes in
pose[26], lighting[4], or other conditions. Thus, the recognition problem is reduced to ex-
amining a specific rectangular image template, and using its appearance to decide whether
or not it is the bounding box around the image of the target object.

Since the problem is formulated in terms of rectangular image windows, appearance-
based recognition methods tend to work well when applied to target objects whose pro-
jection into the image fills a rectangular region. However, many objects produce images
that are poorly approximated by rectangles; for objects such as the chair, table, and lamps
in Figure 1, their bounding boxes in the image will contain a high percentage of pixels
which map to the background or other objects. Most successful recognition techniques
can handle the variation in template appearance induced by a small number of background

1This research was supported in part by NSF Grant IIS-9907142.
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(a) Example test image (b) Extracted edges (c) Test image with edges over-
laid

(d) Recognition result

Figure 1: We address the recognition of objects like chairs(1(a)) and carts(1(c)) based on edge cues (1(b)). An example result
for the cart is shown in 1(d). See Section 1 for an overview and Section 4 for details on experiments.

pixels in the patch. When most of the template consists of clutter, however, its appearance
can vary widely due to a modification of the background or object pose, making it difficult
to detect the object based on the entire template.

A possible solution to this problem, proposed by several authors[6][11][22][30], is to
break up the image representation of the object into a collection of smaller rectangles,
each of which corresponds to a sub-section of the object. This strategy may be effective
for some objects; consider, however, the recognition of an object containing elongated,
wiry components such as the chair in Figure 1(a). Any image template larger than a few
pixels across will intersect mainly clutter pixels when placed over any portion of the legs
or armrests, and it is doubtful that image patches a few pixels square will contain sufficient
information to discriminate the appearance of the object from the background.

Furthermore, popular approaches to object recognition analyze the greylevel or color
texture patterns in candidate patches; thus they tend to work well when the target object
has significant visual texture. Faces, cars, and buildings tend to possess this characteris-
tic. But for the objects in Figure 1, along with many other common objects, there will
be too little appearance variation to use texture as a cue for discrimination. Thus, while
template-based techniques are effective for some objects, we feel it is worth investigating
the problem of recognition from alternative cues, especially shape. Specifically, we hope
to use machine learning techniques to boost the effectiveness of the contour-based recog-
nition paradigm popular in the 1980s[16] to the point of feasibility in high-clutter scenes
under significant 3D pose variation.

In this paper we address the problem of using shape cues to detect a particular object,
such as the specific chair in Figure 1(a), across varying poses. Specifically, given an input
image I (Figure 1(a)), we extract binary edges (Figure 1(b)) and use the configuration
of the edges to determine which edge pixels belong to an instance of a target object, and
which edge pixels belong to clutter (Figure 1(d)). Formally, let L denote a list of the pixels
q = [x, y] such that an edge has been detected at I(q). Our goal is to use L to recover a
second list, O, which contains only those edge pixels q ∈ L which correspond to points on
our target object. Our only source of training data is a set of images containing the target
object in typical scenes, from which edges have been extracted and labeled “object” or
“clutter.” In other words, at training time we are given a set of images T = {T 1, · · · Tnt}
and a set of edge lists, T = {T1, T2, · · · Tnt}, where each Tj is composed of two sub-lists
Tj+ and Tj−; Tj+ consists of edge pixels q+ extracted from image Tj which correspond
to a point on the target object, while each qj− ∈ Tj− is an edge pixel which maps onto the
background. Given the edge list O, alignment techniques may be applied for verification
purposes or to estimate object pose[3][31]; also, it is possible to summarize the location
of the object in the image by computing a bounding box and centroid from O. Here,
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(a) Phase 1 (b) Phase 5 (c) Phase 10 (d) Phase 15

Figure 2: Example recognition results at successive phases of the recognition cascade. The size of the aperture for each phase
is depicted by the circle at upper left. Edge points classified as “chair” are shown in white. See Section 3.2 for an overview and
Section 4 for details on experiments.

however, we focus on the problem of object-background separation in edge images, i.e.
determining which edge pixels correspond to the object and which correspond to clutter.

We present a cascade approach to recovering O. At each point on each edge, we
examine the edges in a neighborhood surrounding it, which we call the aperture of the
edge point(Figure 3(a)). How edges are arranged inside the aperture, termed the local
edge configuration of the edge point, is the cue used to determine whether that edge pixel
belongs to the object or the background. A classifier is trained from the example views
to discriminate local edge configurations of clutter edge points from those of object edge
points. Unfortunately, if the aperture is too small, the local edge configuration may be
ambiguous; in other words, it might be impossible to tell which class the edge point
belongs to based on edge information inside the aperture. For this reason, ambiguous
edge points are passed on to a second classification phase, which considers the local edge
configuration in a larger aperture. If it is still unclear at this stage whether the edge point
belongs to the foreground or background, we attempt to classify it based on features in a
larger aperture, and so on. As an illustration, Figure 2 depicts four phases in this process
for the recognition of the chair in the lower left portion of the image.

At each phase in the cascade, a discriminative classifier computes a sparse set of local-
ized edge features which measure edge density in some image neighborhood. The loca-
tions of the edge features are determined according to a tree structure which is learned at
training time. Figure 3(c) illustrates the classification of one edge point, at one phase of
the cascade.

2 Related Work

Object recognition research in the 1980s culminated in systems which could detect
occluded, 2D, non-convex shapes from binary edge images[16]. Interpretation trees[16],
for example, use a tree search to explore the space of all possible correspondences be-
tween features on an object model and features in the image. Unfortunately, as the num-
ber of model features and image features grows, the space of correspondences can grow
intractably large, especially if the image contains significant clutter or noise.

Indexing techniques such as geometric hashing[23] suffer in the presence of clutter as
well. In these approaches, each k-tuple of image features casts votes for the identities
and/or poses of objects in the image, based on their geometric arrangement. If the image
contains significant noise[17] or clutter, the votes cast by sets of clutter features will
overwhelm the votes cast by the object, making it difficult to draw any conclusions about
what objects are there.

More recently, Belongie et al[5] extended the notion of 3D shape signatures[18] to
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2D shape, for the purpose of edge-based recognition. At each edge point in an image, a
histogram, or "shape context," is calculated; each bin in the histogram counts the num-
ber of edge pixels in a neighborhood near the point. Nearest-neighbor search then de-
termines correspondences between shape contexts from a test image and shape contexts
from model images. Our approach is closely related; both use the distribution of edges in
an aperture surrounding a point as the fundamental feature for recognition. However, the
shape context uses a “dense” set of edge features for recognition; in other words, the bins
in the histogram exhaustively cover the entire aperture. Since we only compute edge fea-
tures at isolated image locations deemed likely to discriminate the edge point in question
as object or clutter, the features we use are spatially “sparse.” While dense features may
be effective when the background is not a concern, we feel that they will represent local
edge configurations poorly for the target objects and scenes we consider. Specifically,
if the neighborhood surrounding an object edge contains a significant number of back-
ground edges– consider the cart in Figure 1(c)– then many of the shape context bins will
be filled solely with background edge points. This is largely the same reason why rect-
angular templates represent local appearance poorly on wiry objects: much of the local
object representation will actually consist of image data drawn from clutter.

Other researchers have addressed the problem of recognizing objects by finding k-
tuples of specific appearance features arranged in appropriate ways[10][2]. These tech-
niques rely on checking the configurations of every k-tuple of detected features in an
image neighborhood; as the number of features in the configuration grows, and the den-
sity of candidate features grows, there will be a combinatorial growth in the number of
scores to be given out at run time.

In [10], a joint Gaussian model of feature locations is assumed; similarly, other recog-
nition approaches assume that the distribution of object features in an image can be de-
scribed by a Markov random field [24][7][25] or an object-specific model such as a body
plan[14]. Our objects are distorted by arbitrary out-of-image-plane rotation; Gaussian,
Markovian, or other simplified models may not capture the variation in feature configura-
tion induced by these transformations.

3 Approach

3.1 Edge Probes
We begin by defining the edge features our algorithm will use to describe the local edge
configuration in an image region. An edge probe at probe center p over a list of edge
pixels L is defined as

EP (p,L) =
∑
t∈L

exp

(
−‖p − t‖2

σ2

)

where t and p are 2-vectors of [x, y] image coordinates. An edge probe can be thought
of as a Gaussian receptive field with variance σ2, centered at point p in an edge image
whose edge pixels are contained in the list L. Edge probes measure the density of edge
pixels in some neighborhood in the image; in this sense, each edge probe is analogous to
a bin in a shape context histogram[5].

Our goal is to determine, for each query edge pixel q = [xq, yq] extracted from an
image, whether it belongs to an instance of our target object or whether it was produced
by the background. We will use edge probes computed at probe centers in an aperture
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(a) Aperture and shifted probe centers (b) An edge probe (c) Classification of a query edge point

Figure 3: Overview of one phase of the recognition cascade. 3(a) Edge probes are evaluated in an aperture surrounding a query
edge point. The query edge point is marked “X,” and edge probes are evaluated at locations marked “+.”3(b) Each edge probe
measures edge density in some image neighborhood. Here an edge probe is evaluated at shifted probe center q + δ for a query
edge point q. 3(c) Edge points are classified by evaluating edge probes according to a tree structure. See Sections 3.1 and 3.3
for details.

surrounding q to make this decision. Specifically, consider a set of relative probe centers
∆ = {δ1, δ2, · · · , δk}, δi = [xδi , yδi ], laid out over a 2D grid centered at the origin. To
classify q, we shift the relative probe centers so that they surround q and compute a subset
of edge probes EP (q, ∆, L) = {EP (q + δ1, L), · · · EP (q + δk, L)} at shifted probe
centers {q + δ1, · · · , q + δk}.An illustration is shown in Figure 3(a)-3(b). We emphasize
that there is a critical distinction between the aperture of an edge point (denoted by the
black circle in Figure 3(a)) and the spatial support of a single edge probe (denoted by
the gradient-shaded region surrounding q + δ in Figure 3(b))– the aperture describes the
image region over which all edge features for a given query point are evaluated, while the
portion of the image which contributes to a single edge feature is determined by the edge
probe support.

Given a fixed σ, we space the relative probe centers evenly over a circular aperture as
in Figure 3(a) so that each pixel in the aperture contributes to one or more edge probes.
But how large should the aperture be? We want the shifted probe centers to cover a
large enough neighborhood surrounding q that the edge probes will contain sufficient
information to discriminate object pixels from background pixels. At the same time,
however, if the aperture is too large (covering the entire image, for example), an unfeasible
amount of computation will be required at training time to evaluate edge probes that might
not be crucial for classification. Worse, if the aperture is so large that most of the edge
probes at shifted probe centers are totally irrelevant to the category of the query edge
point, error-prone classifiers could be trained[20][1]. Thus, we are presented with “the
aperture problem” which appears in so many computer vision problems– when attempting
to induce information about a particular location in the image we want to incorporate
image data from a large enough surrounding area that the information can be induced, but
not so large that we introduce irrelevant data or useless computation.

3.2 The Cascade

Consider a set of relative probe centers ∆ which cover a circular aperture as in Figure
3(a). Define A(∆) to be the radius of the circle. Our approach is to train a series of
classifiers f1, f2, · · · , fk which evaluate edge probes according to sets of relative probe
centers ∆1, ∆2, · · · , ∆k such that A(∆1) < A(∆2) < · · · < A(∆k). The first classifier
in the series, f1, is trained to classify edge points based on edge probes taken from a
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small radius surrounding them; f2 classifies based on edge probes over a slightly larger
radius, and so on. Edge points labeled “object” by f 1are classified by f2; points labeled
“background” by f1are discarded. Edge points labeled “object” by f2 are passed to f3,
and so on.

Thus, we solve our aperture problem in phases– we first identify those edge points
whose class is discriminable based on very nearby features, then identify points that are
made discriminable by features slightly farther away, and continue to do so until the aper-
ture covers the entire object in question. As an illustration, Figure 2 shows the results of
classification at four phases of the cascade.

Besides providing a solution to our aperture problem, the classifier cascade allows fast
screening of image locations that are easily discriminable from the object of interest based
on information in a small window, leaving the bulk of the computation to more ambigu-
ous sections of the image. Similar cascade strategies have recently achieved significant
speedups for template-based approaches to recognition[32][19].

3.3 Classifiers

We seek classifiers f1, f2, · · · , fk which compute a sparse set of edge probes over aper-
tures ∆1, ∆2, · · · ∆k . To accomplish this, we design each classifier as a decision tree of
edge probes[28]. A classifier f consists of a set of nodes connected in a tree structure;
each node represents the evaluation of an edge probe at some shifted probe center. To clas-
sify a query edge point q ∈ L, we start at the root of the tree and evaluate EP (q + δ 1, L),
where δ1 is the relative probe center associated with the root of the tree. Depending on
whether the value of the edge probe is greater or less than some threshold t 1, we shift to
one or the other of the children of the root node, and evaluate edge probe EP (q + δ 2, L)
where relative probe center δ2 is associated with the child. This process of moving from
node to node based on the evaluation of edge probes continues until a leaf node is encoun-
tered. Associated with each leaf node is a table which gives the probability that the query
edge point belongs to the object. By setting a threshold on this probability, we arrive at
a binary decision about whether the image point is classified as an object point or back-
ground point. In short, the application of a classifier to an edge point consists of a series
of edge probes whose probe centers are dependent on the structure of the tree. Figure 3(c)
illustrates the application of one classifier to one query edge point.

Our training procedure for the decision trees is a two-step process of tree generation
and pruning, following the reduced-error pruning approach of Quinlan [28]. In this frame-
work, the training data is split into two subsets, which we will refer to as the tree-growing
set and the holdout set. Standard tree induction techniques are used to build a decision tree
with high classification accuracy on the tree-growing set; then, subtrees are pruned from
the tree when doing so improves some performance criterion on the holdout set[28][8][9].
Our pruning criterion is shaped by the fact that the classifiers are applied in a cascade.
Specifically, consider an edge pixel q which corresponds to a point on the object. If a
classifier mistakenly classifies q as clutter (we will refer to this as a “false negative”), then
the edge point is permanently removed from consideration by further classifiers in the cas-
cade; however, if a clutter edge pixel q is mistakenly classified as belonging to the object
(a “false positive”), then the edge point is passed on to later phases in the cascade, which
may in turn re-classify it correctly based on edge information in a larger aperture. For this
reason, we optimize a Neyman-Pearson criterion [12] during pruning; specifically, we
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prune subtrees whenever doing so improves the false positive rate of the classifier while
keeping the false negative rate below a low, fixed threshold θ.

The training and run-time behavior of our algorithm are summarized in Algorithm
1 and Algorithm 2. Here, for a given set of edge lists L = {L1, · · · Lnl

}, f(L) =
{f(L1), · · · f(Lnl

)}, and f(Lj) = {ljq ∈ Lj|f classifies ljq as ’object’}. Lj+ is the
sub-list of Lj containing object edge pixels extracted from corresponding image and L j−
contains clutter edge pixels.
Algorithm 1 Training
Require: Edge lists T = {T1, T2, · · · Tnt}, sets of probe centers ∆ = {∆1, · · · ∆nd}, σ, θ.
1: Split T into a tree-growing set G = {G1, · · · Gng} and a holdout set H = {H1, · · · Hnh}.
2: G1 = {G1

1, G1
2, · · · G1

ng
} = G, H1 = {H1

1 , H1
2 , · · · H1

nh
} = H

3: for i = 1 to k do // loop over cascade phases
4: for all Gi

j ∈ Gi do // loop over the tree-growing set

5: for all q+ ∈ Gi
j+ do // loop over object edge pixels

6: gi
jq+ = EP (q+,∆i, Gi

j)
7: end for
8: for all q− ∈ Gi

j− do // loop over clutter edge pixels

9: gi
jq− = EP (q−,∆i, Gi

j)
10: end for
11: end for
12: Train a decision tree fi to discriminate {gi

1q+, · · · gi
ngq+} from {gi

1q−, · · · gi
ngq−}.

13: Prune fi based on Hi.
14: Gi+1 = fi(G

i), Hi+i = fi(H
i) // discard correctly classified background edge pixels

15: end for

Algorithm 2 Run Time
Require: List of edge pixels L
1: L1 = L
2: for i = 1 to k do // loop over cascade levels
3: Li+1 = fi(L

i) // discard background edge pixels
4: end for
5: Return Lk+1

4 Experiments

To validate our approach we address the problem of detecting two common objects, a
chair and a cart, in highly cluttered indoor scenes under high variation of out-of-image-
plane rotation. We evaluate the performance of our cascade by computing the true positive
(i.e. one minus false negative) rate and false positive rate in each image. We emphasize
that since we represent objects at a pixel level, “true positive rate” does not mean “per-
centage of times the object was detected.” Instead, it means “percentage of object pixels
detected.” Thus, even if the true positive rate is below 100%, it may still be possible to
conclusively locate the object in all test images, since the density of object edge points
will be relatively high at the true location of the object if the true positive rate is relatively
high. Likewise, “false positive rate” does not relate to “number of times a section of the
background was mistakenly labeled as the object,” but rather to “number of times an edge
pixel in the background was mistakenly labeled as belonging to the object.” Thus, even if
the false positive rate is greater than zero, it may be possible to achieve zero false detec-
tions of the object, especially if the falsely-detected background edge pixels are sparsely
distributed in the scene.
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(a) Foreground images (b) Background images
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(c) ROC curve for the chair
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(d) ROC curve for the cart

Figure 4: Example foreground and background images and ROC curves for recognition experiments. See Section 4.

4.1 Procedure

We took 150 images each of the cart and chair against a blue screen (Figure 4(a)). The
images span the full revolution of the objects in the plane parallel to the floor. The eleva-
tion of the camera varies by approximately 25 degrees with respect to the object, and the
extent of scale variation across images is about 10%. For some of our images, the generic
viewpoint assumption is violated[15]; for example two of the legs of the chair in Figure
4(a), second row, fourth column, are accidentally aligned.

We also took images of a background scene consisting of a set of “office” objects–
for example lamps, a table, and boxes(Figure 4(b)). The set of views spans roughly 60
degrees of rotation in the plane parallel to the floor, and variation in scale and camera ele-
vation is about the same as for the cart and chair images. To induce appearance variation
in the background between views, we modified the poses of each background object and
shuffled their relative positions every 5 to 8 images. The camera was moved between each
view.

The images used as training and testing data in our experiments are composites of
random pairs of foreground and background images (Figure 1(a) and Figure 1(c) are ex-
amples). The pairing was done without replacement; in other words, there is no repetition
of foreground or background images in the composite images.

For each recognition trial, 150 composite images were partitioned into a tree-growing
set of 50 images, a holdout set of 50 images, and a test set of 40-50 images. Edges
were detected on all images using the Vista line finder[27]; for computational reasons
we sample the detected edges at 5 pixel intervals and classify the edge samples. In each
image, the ratio of the number of background edge pixels to foreground edge pixels is
approximately 10 : 1.

We arranged the probe centers in concentric rings as in Figure 3(a). The rings are
spaced at radial intervals of σ pixels, where σ2 is the edge probe variance. The set of
relative probe centers ∆i used for training fi is the set of all relative probe centers within
a distance ri of the origin, where ri = σi. There are 15 classifiers in the cascade, so the
apertures for the classifiers vary in radius from σ to 15σ pixels. We conducted three dis-
tinct sets of recognition trials, with σ set to 5 pixels, 10 pixels, and 20 pixels respectively;
we achieved similar recognition performance regardless of the setting of σ, so we only
report results for σ = 10 pixels here.

To train the classifiers, we first discretize the edge probe values using the implementa-
tion of minimum-entropy discretization[13] in the MLC++ software library[21]; decision
trees were grown using the ID3 routine from the same package. The Laplace approxima-
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tion was employed to estimate probabilities at each leaf in the tree. We used the holdout
set to prune the decision trees as described in Section 3.3, setting our target false negative
rate θ to 2%.

4.2 Results

A sample result on the chair is shown in Figure 2; the images show classification results
after the first, fifth, tenth, and fifteenth cascade phase. Note that as successive classifiers
are applied, using larger apertures, the number of background edge points is reduced
dramatically while retaining a high number of edge points on the chair. Note that the false
positives are so sparse and isolated after the last phase that they could easily be removed
by simple filtering. A sample input and result for the cart object are shown in Figure
1(c) and Figure 1(d). Again, most of the background pixels have been filtered out by the
cascade, while a high concentration of edge pixels remains on the cart.

The performance of each tree in the cascade, over all test images containing the chair,
for σ = 10 pixels, is summarized in the ROC curve in Figure 4(c). We performed 7 recog-
nition trials; each trial consisted of randomly partitioning the images into tree-growing,
holdout, and test sets, training the cascade, and evaluating the overall false negative and
false positive rates of the cascade as more phases are added. Thus, the point marked F 1

plots true positive rate as a function of false positive rate for a cascade consisting of one
classifier, f1; F5 plots the performance of a cascade containing f1, f2, · · · , f5; and so on.
More specifically, for each cascade we compute the true positive rates N = {n ij} and
false positive rates P = {pij} for each test image i and recognition trial j. The “x” in the
graph plots (mean(P ), mean(N)); error bars extend to the left and right by var(P ) and
up and down by var(N). Figure 4(d) shows an analogous graph for results of 6 recogni-
tion trials with the cart. For both objects, the results for σ = 5 pixels and σ = 20 pixels
are similar.

The true positive and false positive rates for the two objects are comparable– for ex-
ample, roughly 70% of edge pixels on the object are retained, versus 5% false positives
among the background.

5 Conclusion

Our approach to separating objects from background based on edge cues consists of
screening each edge pixel in the image through a series of classifiers, each of which
computes edge features over successively larger image areas. Each classifier in the cas-
cade computes a sparse set of localized edge features in a sequence determined by its tree
structure. By tuning feature extraction to the object and background present in training
images, we overcome the effects of object structure (concavities, holes, wiry structures)
which tend to confound template-based approaches to recognition. And by screening the
image through a series of increasingly complex classifiers, we quickly discard edge points
which are easily discriminated from the object, saving computation for more ambiguous
portions of the image.
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