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Abstract

One of the most popular methods to extract useful informations from an im-
age sequence is the template matching approach. In this well known method
the tracking of a certain feature or target over time is based on the compar-
ison of the content of each image with a sample template. In this article,
we propose an efficient robust template matching algorithm that is able to
track targets in real time. Special attention is paid to occlusions handling and
illumination variations.

1 Introduction

Template matching is a major task for numerous computer vision applications. Two ma-
jor categories of approaches are generally distinguished. Feature-based approaches uses
local features like points, line segments, edges, or regions. With these techniques it is
possible to localize the object in the current image and to predict the feature positions
in subsequent ones, according to a motion model and an uncertainty model. Pose search
techniques are naturally less sensitive to occlusions, as they are based on local correspon-
dences. If several correspondences are missing the pose is still computable.

On the other hand, global or template-based approaches take the template as a whole.
The strength of these methods lies in their ability to treat complex templates or patterns
that cannot be modeled by local features. They are very robust and have been extensively
used. They have also been called sum-of-square-difference (SSD) as they usually consist
in minimizing the difference between a reference template and a region of the image.
Historically brute force search was used. But this strategy is impractical in the case of
transformations more complex than 2D translations, which involve higher dimensional
parameter spaces.

Recently, a new efficient framework have been proposed. The tracking problem is
posed as the problem of finding the best (in least squares sense) set of parameter values
describing the motion and deformation of the target through the sequence. In this case,
parameter variations are written as a linear function of a difference image (the difference
between the reference target image and the current image). This approach is very effi-
cient as motion can be easily deduced from the difference image. Cootes, Edwards and
Taylor [2] use it to dynamically estimate the parameters of a face appearance model (2D
model). Hager and Belhumeur [4] include it in a general framework for object tracking,
under planar affine motions. Only a few works use this approach with projective transfor-
mations [3, 8, 7], because projective transformations are highly non-linear and because of
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the size of the parameter space. In a recent article [6], we also have address the problem
of tracking 3D surfaces viewed under projective transformations.

In this article, special attention is paid to occlusions handling and illumination vari-
ations. We propose an efficient solution to the problem of SSD tracking of partially
occluded planar (or 3D) surfaces.

This article is made of three sections. In the first one, the problem of tracking tem-
plates with occlusions is posed and the principles of the proposed approach are briefly
given. The next section is devoted to the detailed description of the proposed approach.
In the last section, some experimental results are given.

2 Template matching and occlusion handling

2.1 Template based tracking

Let1 I(x; t) the brightness value at the location x = (x; y) in an image acquired at time
t. Let R = (x1;x2; : : : ;xN ) the set of N image locations which define a target region.
I(R; t) = (I(x1; t); I(x2; t); : : : ; I(xN ; t)) is a vector of the brightness values of the
target region. We refer to I(R; t0) as the reference template. It is the template which is to
be tracked; t0 is the initial time (t = 0). These points are the projections of a set of 3D
points RO = (X1; : : :XN ) belonging to an object surface.

The relative motion between the object and the camera induces changes in the position
of the template in the image. We assume that these transformations can be perfectly mod-
eled by a parametric motion model. In [7] we proposed a general motion model allowing
any kind of planar transformations. In this article we assume that the transformation is
applied to planar surfaces using homographies.

Let X = (X;Y; Z) be the coordinates of a point in the 3D object-centered co-
ordinate system, and x = (x; y) its projection in the image. 3D homographies (as
well as 3D rotations, translations and perspective projections) can be written with the
standard homogeneous coordinates formalism as a matrix product: x = M(�(t))X.
In that case, we assume x and X to be written with homogeneous coordinates. Ma-
trix M is representing the homography (or the composition of rotations/translations).
�(t) = (�1(t); : : : ; �P (t)) is the set of parameters included in M, depending on the
relative position between the surface and the camera. There are six parameters (P = 6):
three translation components and three Euler angles in case of projection of 3D surfaces
(assuming the camera is calibrated), eight parameters (P = 8) in case of homographies.
We call � the motion parameter vector. At time t0, the template position is known and
parametrized by �0. The set of N image locations corresponding to the 3D points on the
surface target are denoted RO and their projections at time t are denoted M(�(t))RO.
With these assumptions, “tracking the object at time t” means “compute” �(t) such that:
I(M(�(t))RO; t) = I(M(�0)RO; t0). The ground truth value, at time t0, is supposed
to be �0: The motion parameter vector of the target surface �(t) can be estimated by
minimizing the least squares following function:

O(�(t)) =k I(M(�(t))RO; t)� I(M(�0)RO; t0) k (1)

This very general formulation of tracking have been used by several authors [1, 3, 4,
8].

1Bold fonts denote vectors and matrices.
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2.2 Occlusion handling

2.2.1 Previous works

Equation (1) can be minimized by the straightforward estimation:

�(t) = argmin�(t)

 X
Xi2RO

k I(M(�(t))Xi; t)� I(M(�0)Xi; t0) k

!
;

using brute force search [9] or optimization algorithms [1]. In that case, occlusions can
be handled by introducing a robust error function � in the definition of the matching error,
where � can be Huber’s function [9] or other robust norms [10]. Black and Jepson [1]
propose to treat some of the points as outliers. They define a binary “outliers vector”, or
“mask”,m . The mask is computed using a simple rule which set m i as 0 or 1 depending
on the value k I(M(�(t))Xi; t)� I(M(�0)Xi; t0) k.

On the other hand, other approaches minimize equation (1) using difference im-
ages. In that case, as shown in [3, 8, 4], the solution of equation (1) is �(t + 1) =
�(t) + (J tJ)�1J t[I(M(�(t))RO; t) � I(M(�0)RO; t0)]; where J is the Jacobian ma-
trix of I with respect to �: In case of occlusion, Hager et al. [4] propose to use an usual
form of IRLS. In order to formulate the algorithm, they introduce the an “inner itera-
tion” which is performed one or more times at each time step. They introduce a diagonal
weighting matrix which weights the difference image. The inner iteration cycle consists in
performing an estimation of this matrix step by step, while refining the motion estimation.

2.2.2 Proposed approach

None of the previously presented approaches really faces up to actual problems induced
by occlusions. When using IRLS or robust norms the interpretation of the difference
k I(M(�(t))Xi; t) � I(M(�0)Xi; t0) k is ambiguous. There is no way to know if this
difference is produced by an occlusion or by a movement of the object. There is an
ambiguity between motion and occlusion. Strong differences (compared to the variance
of grey level values without occlusions) can be easily discarded. On the other hand, weak
differences (produced by shadows for example) can be interpreted as motions. We have
experimentally observed that there are numerous cases where the previous approaches
failed.

Handling occlusions is easier when using feature bases approaches, because robust
estimation only concerns feature positions and not illumination. The geometric structure
of objects cannot be changed by illumination and that is why in this case there is no
ambiguity between occlusion and motion.

We strongly believe that robust estimation have to be applied on positions or local
on transformations rather than on illumination. This is the key idea of this article. Un-
fortunately it is not directly applicable to template based approaches as templates are
considered as being indivisible.

The proposed idea is to build a template representation which includes the original
template plus sub-templates obtained by dividing it into several parts according to a quad-
tree scheme. If there is l different levels, the representation will include N t = 1 + 4 +
� � �+ 4l different templates. Figure 1 illustrate this representation for l = 3.

In that case, there is not one but several templates that are to be tracked. First, it
means that tracking must be very efficient because of the large number of templates.
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Figure 1: Template representation: it contains the original template plus sub-templates
obtained by dividing the original one.

Second, each tracker only gives the motion of the corresponding sub-template. In case
of occlusions, some of the trackers can provide erroneous motions. These local motions
have therefore to be robustly combined in order to obtain the global and actual motion of
the template. This task is not obvious because the largest sub-templates can be tracked
with hight accuracy but are very sensitive to occlusions, while the smallest sub-templates
produce less accurate but more robust motion estimations. As we want to suppress the
ambiguity between illumination and motion, the only way to know if a tracker produces
a correct motion is to robustly combine the set of motions produced by each one of these
trackers.

If these two tasks - efficient sub-template tracking and robust motion estimation- can
be handle this approach will be very powerful: when the template is not occluded the
motion estimation is very accurate and can fully use the constraints brought by the whole
template; in case of occlusion, the precision will decrease, proportionally to the amount of
occlusion, because in that case the global motion will be computed from the motion of the
smallest templates (those which are not affected by occlusions), which are less accurate.

The next section is devoted to the description of the two required tasks: efficient
tracking and robust motion estimation.

3 Robust and efficient template matching

3.1 Efficient template matching - learning stage

Let us first see how we propose to efficiently track templates and sub templates. Each
template and sub-template is tracked independently, using the following approach.

Our approach is based on two stages: an off-line learning stage and a tracking stage.
This section describes the learning stage. During this learning stage a linear relation
linking motion and illumination variations is established.

In this stage, we assume that the motion is computed from a difference between the
initial position and a new position in the neighbourhood of the initial position. We will
see later how to generalize this to any position of the template.

The key idea is to obtained a very straightforward and efficient computation of the
motion parameters �(t) by writing:

�(t0 + �) = �(t0) +A(t0 + �)[I(M(�0)RO; t0)� I(M(�(t0))RO; t0 + �)]

where � denotes the time between two successive images (see [7] for detailed expla-
nations). We will see later how matrixA(t0+�) can be obtained. If we write Æi(t0+�) =
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I(M(�0)RO; t0) � I(M(�(t0))RO; t0 + �)and Æ�(t0 + �) = �(t0 + �) � �(t0); the
previous equation can be written:

Æ�(t0 + �) = A(t0 + �)Æi(t0 + �) (2)

Equation (2) can be seen as the equation of P hyper-planes (P is the number of pa-
rameters of the transformation). An estimation of the matrix A can be done using the
method proposed in [7].

3.2 Robust tracking

At this level, we assume that we know the variation Æ�i of the Nt templates, by using
Nt different trackers working independently, as described in the previous section. Each
tracker provides a motion vector Æ� i; i 2 [1; Nt], relatively to the initial template position.
From this set of motion vectors, we want to compute the real motion Æ�, in a robust way.
When there is no occlusion, the vectors Æ�i are the same; in case of occlusion, those
affected by occlusion will provide erroneous motion estimation. We have to keep in mind
that these variations are variations from the initial position �0.

The key idea is to suppose that correct motion vectors will be concentrated in a unique
area of the motion vector space, while erroneous ones will be disorganized, because the
effect of occlusion on each tracker is different. We propose to see this problem as the
problem of finding the correct “variation” of the template pose (Æ� vector is the variation
of the template pose) from Nt poses variations hypotheses (Æ�i):

Furthermore, the fact that the different trackers do not have the same accuracy have
to be taken into account to “weight” the hypotheses. In practice, the uncertainty will be
modeled using Gaussian models.

Finally, the “best pose variation”, i.e. the vector Æ� that best satisfies the Æ� i hypothe-
ses, can be computed by exploring the parameter space, taking into account the Gaussian
contribution provided by each hypothesis. This “best pose” search will be done according
to the strategy given in [5].

Modeling the uncertainty

During the learning stage, equation (2) allows to compute an estimation of matrixA, for
a given tracker. In a second time, one can compute the covariance matrix associated with
this model. There is one covariance matrix per tracker. Let Q be this covariance matrix,
obtained by: Q = (Y � AH)t(Y � AH); using the notation defined in the previous
section. Motion errors are assumed to be normally distributed.

Let P (Æ�jÆi) be the probability of Æ� knowing Æi. In a P-dimensional parameter
space, the P-dimensional normal probability density function with covariance matrix Q
is:

P (Æ�jÆi) = (2�)�
P

2 jQj�
1

2 exp(�
1

2
ÆitQ�1Æi)

For purpose of simplification, in the rest of the paper we do not represent features in
their original feature space [5]. We decompose the covariance matrix Q�1 as : Q�1 =
UD�1Ut where U is the orthogonal matrix of eigenvectors of Q and D the diagonal
matrix of eigen values. The P eigen values will be denoted � 1; � � � ; �P .
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By projecting features in the eigenspace, the normal distribution for the model feature
i is much simple:

P (Æ�jÆi) = (2�)�
P

2

j�PY
j=1

�
� 1

2

j exp(�
1

2

j�PX
j=1

�2j

�j
)

�i denotes the difference Æi projected into the eigenspace (�i = UÆi).
As explained before, there is one different covariance matrix per tracker.

Finding the best variation Æ�.

During the tracking stage, each tracker provides a motion hypothesis Æ� i, which has to
be interpreted as a Gaussian distribution in the motion parameter space. The best mo-
tion variation is defined as the variation satisfying the largest number of trackers. This
variation Æ� can be define as:

Æ� = argmaxÆ�
X

i2[1;Nt]

Pi(Æ�jÆi) (3)

Justifications for using this definition are given in [5].
The idea is to find the best motion by recursively exploring the space of possible mo-

tions. Recursive subdivision consists in recursively splitting the space in two subspaces,
alternating axes, and in evaluating the probability of each one of the two sub-spaces, and
finally in exploring the ones having highest probabilities.

This process can be seen as a tree search. The root node corresponds to the initial box.
Leaves are the smallest regions taken into account. We proposed in [5] a very efficient
way to explore this space. The same strategy is used here.

At the end we get a small subset of the parameter space which best satisfied equation
(3).

3.3 Tracking with hyperplane approximation

The proposed scheme is very inefficient, taken under its initial form. Direct computation
of matrix A involves a least square minimization, which is to be repeated for each new
position of the template. The matrix depends on the current position, orientation, etc.
given by �. The learning stage consists in computing a linear relation between a set of
grey level differences and a correction of the parameter variation Æ�. This relationship is
computed around the value �0 – known when the user selects an image region – and is
not valid for other values of �.

We explain in [7] how it is possible to extend this relation for any value of �, without
recomputing the matrix.

Let the region be defined as RO = (X1;X2; :::;XN ) the set of N points in a local
reference called the region reference. Matrix M(�) changes the coordinates of X =
(X;Y; Z) in the reference region into x = (x; y) = M(�)X in the reference image.
Time is suppressed to simplify the notations.

When the user defines a target region in the reference image, he defines a set of corre-
spondences between points in the reference region and points in the reference image (for
example the corners of a rectangular region). Knowing this set of correspondences, the
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computation of �0 such that M(�0) aligns the reference region on the target (defined in
the reference image ) is possible.

The learning stage consists in producing small random disturbances Æ� around � 0.
We denote such disturbances as �0

0 = �0 + Æ� .
In order to simplify the notations, we write: M =M(�);M0 =M(�0) andM0

0 =
M(�0 + Æ�0): We also suppose that matrixM� is suchM0

0 =M0M�.
Disturbances produce a change of brightness Æi = I(M0RO)� I(M0

0RO):
A set of Np disturbances Æ� are produced in order to obtain the linear model giving

Æ� = AÆi: During the training stage it is possible to estimate motion Æ� knowing Æi.
If x0 are the coordinates ofX in the reference image under the transformation � 00 then

x0 = M0
0X. Let X0 be such that x = M0

0X
0. Assuming M is invertible, we obtain

X0 =M0�1
0 M0X.

Therefore, knowing Æi, we can estimate � 00, and finally compute the displacement of
the region expressed in the region reference. This displacement is only valid around � 0.

At the beginning of the tracking stage, a prediction of the parameters is known and is
denoted �0. The tracking consists in estimatingM =M(�) such that

I(MRO; t) = I(M0RO; t0);

with the notation I0(M0RO) = I(M0RO; t0). Time t is removed to simplify the nota-
tions.

By computing

Æ� = AÆi = A[I0(M0RO)� I(M0RO)]; (4)

whereM0 =M(�0), �0 being the predicted position of the template. We obtain a distur-
bance Æ� that would have produced Æi if the parameters vector had been � 0. In that case,
a locationX of the region is transformed intoX 0 =M0�1

0 M0X, withM0
0 =M0M�.

The actual transformation turnsX into x: x =MX. IntroducingX 0 =M0�1
0 M0X

in the relation x0 =M0X0 gives:

x0 =M0X0 =M0M0�1
0 M0X (5)

This equation is fundamental for tracking: it gives the transformation aligning the
region on the target at the current time, knowing a prediction � 0 and a local disturbance
Æ�. This local disturbance around the initial value �0 is obtained by mapping the current
image on the reference region and computing the difference Æi = I(M 0RO)�I(M0RO).
Equation (2) gives �00 = �0 +AÆi, and allows to computeM� =M�1

0 M
0
0.

The main idea is therefore to correct the transformation of the region in the reference
region (acting as if the parameters were �0) and to transform this correction by applying
M(�0). This can be written:

M =M0(M0M�)
�1M0 (6)

Using this approach, it is possible to track more than 50 templates/sub-templates in
real time, assuming these templates include from 100 (largest templates) to 20 points
(smallest ones).
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Figure 2: tracking with and without occlusions. Left: white rectangular area represent
templates position provides by each tracker. Right: representation of the transformation
space. The probability density is projected on the (tx; ty) plane, in order to represent the
transformations. The square area represents translation of 10x10 pixels.

Figure 3: planar motions with occlusions. Six images taken from a video sequence.

4 Results

Tracking with translation, rotation and scaling In case of planar translation (tx; ty),
planar rotation (�) and scale (s), the relation between a point of coordinates (X;Y ) in
the reference region and the corresponding point in the image coordinates (x; y) is: x =
s cos(�)X � s sin(�)Y + tx and y = s sin(�)X + s cos(�)Y + ty.

It can be written with matrix products, using homogeneous coordinates.
For this experiment we use 3 levels to represent the template, leading to 21 different

trackers. The largest template is made of 100 points; on the intermediate levels, sub-
templates are made of 40 points; the 16 smallest sub-templates are made of 20 points.
The learning stage take less than 0.5s; during this stage 1000 disturbances are produced.

The tracking (sub-template tracking and robust estimation) takes less than 30ms on a
standard Silicon Graphics 02 workstation.

Figure 2 provides and illustration of our method. The same template is shown with
and without occlusions. On the left, white rectangular areas represent template positions
provided by each tracker. The transformation space is represented on the right. The prob-
ability density is projected on the (tx; ty) plane, in order to represent the transformations.
The figure shown translations in an area of 10x10 pixels. If there is no occlusion, the
trackers do not provide exactly the same results, because of the inaccuracy of the “small-
est” trackers. Some trackers are more accurate than other, depending on the patterns
included in the various sub-templates.

Figure 3 shows six images taken from a video sequence. It illustrates the ability of the
algorithm to handle partial occlusions in real time.

Tracking homographic motions Homographic motions can be handle exactly in the
same way. Figure 4 show six images taken from a video sequence processed in real time.
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Figure 4: Tracking homographic motions with occlusions. Six images taken from a video
sequence.

Figure 5: Tracking homographic motions with illumination changes. Six images taken
from a video sequence.

Tracking with illumination variations Illumination variations can be treated in a much
simpler way than occlusions. Occlusions locally change the local repartition of grey levels
values. On the other hand, illumination changes can be easily compensated by locally
norming the image. Instead of directly taking the grey levels values to obtain I(x), we
compute the min and max value of the intensity in a small area around x. In the previous
equations, we substitute I(x) for I(x)�min

max�min
.

This simple normalization gives very reliable results in case of illumination variations
as well as in case of shadows. Fig. 5 shows some images taken from a video sequence
with occlusions shadows and illumination variations.

5 Conclusions

We have presented an original and efficient algorithm for handling occlusions and illumi-
nation variation in SSD trackers.

Using robust norms directly on intensity is ambiguous, as it is impossible to know if
intensity variation is due to target motions or is due to occlusions. Our approach consists
in representing the template as a pyramid of sub-templates, and in tracking independently
each sub-pattern. The robust estimation is based on local motions rather than on intensi-
ties, suppressing ambiguities. The smallest sub-templates provide inaccurate but robust
motions. The largest ones provide non robust but accurate motions. The search for the
optimal global motion is computed using a recursive search in the motion space.

The presented experimental results show that our technique is efficient (real-time on
low cost hardwares) and robust to occlusions and illumination changes.
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