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Abstract

A novel approach to appearance based object recognition is introduced. The
proposed method, based on matching of local image features, reliably recog-
nises objects under very different viewing conditions.

First, distinguished regions of data-dependent shape are robustly detec-
ted. On these regions, local affine frames are established using several affine
invariant constructions. Direct comparison of photometrically normalised
colour intensities in local, geometrically aligned frames results in a match-
ing scheme that is invariant to piecewise-affine image deformations, but still
remains very discriminative.

The potential of the approach is experimentally verified on COIL-100 and
SOIL-47 – publicly available image databases. On SOIL-47, 100% recogni-
tion rate is achieved for single training view per object. On COIL-100, 99.9%
recognition rate is obtained for 18 training views per object. Robustness to
severe occlusions is demonstrated by only a moderate decrease of recognition
performance in an experiment where half of each test image is erased.

1 Introduction

Object recognition is one of the oldest fields in computer vision, and is still attracting the
attention of many researchers. As a consequence, a wide range of approaches have been
proposed. In general, two main trends can be distinguished: model-based and appearance-
based approaches. While model-based methods try to analytically model the relation
between the object and its projection to the image, appearance-based methods recognise
objects by visual similarity, without attempting high-level image analysis. Model-based
approaches usually rely on extraction of 2D primitives, such as image edges, which are
hard to obtain and interpret reliably. On the other hand, appearance-based approaches,
that directly use the intensity function, or transformation thereof (eigenimages, colour
histograms, etc.), are prone to fail under viewpoint and illumination changes, once the
appearance of the object changes substantially.

As an attempt to combine advantages of both approaches, methods based on the
matching of local features have been proposed. Like in the appearance-based approaches,
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an object model is learnt from images thereof, however local features are extracted and
used for the matching. The advantage here is that the deformations of object appearance
caused by viewpoint changes, although being globally complex, can be approximated by
simple transformations at the local scale. Various methods in this category differ in the
choice of local image regions and in the features computed over these regions. Com-
mon approaches include geometric hashing exploiting geometric configuration of local
image features [6], PCA analysis over local image areas (eigenwindows) [10], matching
local colour histograms [13, 4], matching gaussian derivatives in neighbourhoods of scale-
invariant interest points [11, 8], or matching moment invariants in local affine-invariant
regions [15, 14].

In this work, an assumption is made that image deformations can be reasonably well
approximated by local affine transformations of both the geometry and the illumination.
Such assumption holds for objects where locally planar surface regions can be found, and
where the size of such regions is small relative to the camera distance, so that perspective
distortions can be neglected. The proposed approach is based on a robust, affine and
illumination invariant detection of local affine frames (local coordinate systems). Local
correspondences between individual images are established by a direct comparison of
normalised colours in image patches represented canonically in normalised affine frames.
The method achieves the discriminative power of template matching while maintaining
the invariance to illumination and object pose changes.

The most closely related work is that of Tuytelaars [14], where local regions were also
affine-invariantly found, but these regions were used to determine the image area over
which moment invariants were computed. We argue here, that once image regions are
found in an affine-invariant way, matches can be established by direct comparison of in-
tensity profiles over these regions. Tuytelaars also proposed to establish correspondences
using normalised correlation over the shape-normalised regions, but since the regions
were determined up to an unknown rotation, a computationally expensive maximisation
of the correlation was used.

The main contribution of the paper is the utilisation of several affine-invariant con-
structions of local affine frames (LAFs) for the determination of local image patches that
are being put into correspondence. The robustness of the matching procedure is accom-
plished by assigning multiple frames to each detected image region, and not requiring all
of the frames to match. Matching score is estimated as the number of established local
correspondences, without enforcing a global model consistency. Ignoring the consistency
generalises the object representation to such views where the global appearance substan-
tially differs from the training views, but still some of the local features are preserved
so that local correspondences can be established. However not rejecting the inconsistent
matches requires that their fraction is low, putting thus high demands on the selectivity of
the correspondence generation process.

The paper is organised as follows. In Section 2 we briefly review the concept of
distinguished regions. Section 3 gives a description of procedures for construction of
local affine frames on the distinguished regions. Section 4 details how correspondences
between the local affine frames are established, and in Section 5 experimental results are
presented.
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2 Distinguished Regions

Distinguished Regions (DRs) are image elements (subsets of image pixels), that posses
some distinguishing, singular property that allows their repeated and stable detection over
a range of image formation conditions. In this work we exploit a new type of distinguished
regions introduced in [7], the Maximally Stable Extremal Regions (MSERs). An extremal
region is a connected component of pixels which are all brighter (MSER+) or darker
(MSER-) than all the pixels on the region’s boundary. This type of distinguished regions
has a number of attractive properties: 1. invariance to affine and perspective transforms,
2. invariance to monotonic transformation of image intensity, 3. computational complex-
ity almost linear in the number of pixels and consequently near real-time run time, and
4. since no smoothing is involved, both very fine and coarse image structures are detected.
We do not describe the MSERs here; the reader is referred to [7] which includes a for-
mal definition of the MSERs and a detailed description of the extraction algorithm. The
report [7] is available online. Examples of detected MSERs are shown in Figure 1. Note
that DRs do not form segmentation, since DRs do not cover entire image area, and DRs
can be (and usually are) nested.

Figure 1: An example of detected distinguished regions of MSER type

3 Local Frames of Reference

Local affine frames facilitate normalisation of image patches into a canonical frame and
enable direct comparison of photometrically normalised intensity values, eliminating the
need for invariants. It might not be possible to construct local affine frames for every
distinguished region. Indeed, no dominant direction is defined for elliptical regions, since
they may be viewed as affine transformations of circles, which are completely isotropic.
On the other hand, for some distinguished regions of a complex shape, multiple local
frames can be affine-invariantly constructed in a stable and thus repeatable way. Ro-
bustness of our approach is thus achieved by selecting only stable frames and employing
multiple processes for frame computation.
Definition of terms:

Affine transformation is a map F : R
n → R

n of the form F (x) = AT x + t, for all
x ∈ R

n, where A is a linear transformation of R
n, assumed non-singular here.

Center of gravity (CG) of a region Ω is µ = 1
|Ω|

∫
Ω

xdΩ.
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Figure 2: Construction of affine frames. From left to right: a distinguished region (the
grey area), the DR shape-normalised according to the covariance matrix, normalised con-
tour curvatures, normalised contour distances to the center of DR, and one of the con-
structed frames represented by its basis vectors.

(a) (b) (c) (d)

Figure 3: Bi-tangent based constructions of affine frames. (a) original views, (b) 2 tangent
points + farthest concavity point, (c) 2 tangent points + DR’s center of gravity, (d) 2
tangent points + farthest DR point. Left columns - detected frames, right columns -
locally normalised images

Covariance matrix of a region Ω is a n × n matrix defined as
Σ = 1

|Ω|
∫
Ω
(x − µ)(x − µ)T dΩ.

Bi-tangent is a line segment bridging a concavity, i.e. its endpoints are both on the re-
gion’s outer boundary and the convex hull, all other points are part of the convex
hull.

Affine covariance of the center of gravity and of the covariance matrix is shown
in [16]. The invariance of the bi-tangents is a consequence of the affine invariance (and
even projective invariance) of the convex hull construction [12, 9]. Finally, we exploit
the affine invariance of the maximal-distance-from-a-line property, which is easily appre-
ciated taking into account that affine transform maintains parallelism of lines and their
ordering.

A two-dimensional affine transformation possesses six degrees of freedom. Thus, to
determine an affine transformation, six independent constraints are to be applied. Various
constructions can be utilised to obtain these constraints. In particular, we use a direction
(providing a single constraint), a 2D position (providing two constraints), and a covariance
matrix of a 2D shape (providing three constraints).

Frame constructions. Two main groups of affine-invariant constructions are pro-
posed, based on 1. region normalisation by the covariance matrix and the center of gravity,
and 2. detection of stable bi-tangents

Transformation by the square root of inverse of the covariance matrix normalises the
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DR up to an unknown rotation. To complete an affine frame, a direction is needed to
resolve the rotation ambiguity. The following directions are used: 1. Center of gravity
(CG) to a contour point of extremal (either minimal or maximal) distance from the CG
2. CG to a contour point of maximal convex or concave curvature, 3. CG of the region to
CG of a concavity, 4. direction of a bi-tangent of a region’s concavity.

In frame constructions derived from the bi-tangents, the two tangent points are com-
bined with a third point to complete an affine frame. As the third point, either 1. the center
of gravity of the distinguished region, 2. the center of gravity of the concavity, 3. the point
of the distinguished region most distant from the bi-tangent, or 4. the point of the con-
cavity most distant from the bi-tangent is used. Another type of frame construction is
obtained by combining covariance matrix of a concavity, CG of the concavity and the
bi-tangent’s direction.

Frame constructions involving the center of gravity or the covariance matrix of a DR
rely on the correct detection of the DR in its entirety, while constructions based solely
on properties of the concavities depend only on a correct detection of the part of the DR
containing the concavity.

Figure 2 visualise the process of shape-normalisation and a dominant point selection.
A distinguished region detected in an image is transformed to the shape-normalised frame,
the transformation being given by the square root of inverse of the covariance matrix.
Normalised contour curvatures and normalised contour distances are searched for stable
extremal values to resolve the rotation ambiguity. One of the constructed frames is shown
on the right in Figure 2, represented by the two basis vectors of the local coordinate
system. Figure 3 shows three examples of the local affine frame constructions based on
concavities.

4 Matching

Once local affine frames are computed in a pair of images, (geometrically) invariant de-
scriptors of local appearance are not needed for the matching. Correspondences are es-
tablished simply by correlating photometrically normalised image intensities in geomet-
rically normalised measurement regions. A measurement region MR is defined in local
coordinate systems of the affine frames, but the choice about MR shape and size can be
arbitrary. Larger MRs have higher discriminative potential, but are more likely to cover
an object area that violates the local planarity assumption. Our choice is to use a square
MR centred around a detected LAF, specifically an image area spanning 〈−2, 3〉×〈−2, 3〉
in the frame coordinate system. Multiple MRs for every LAF could be used, increasing
the robustness (and computational complexity) of the method. The frame normalisation
proceeds in four steps:

1. establish a local affine frame

2. compute the affine transformation mapping the LAF to a normalised coordinate
system

3. resample the intensities of the LAF’s measurement region into a raster in the nor-
malised coordinate system. To represent the content of normalised MRs, we use
rasters of size 21 × 21 pixels.
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4. The photometric normalisation Î(x, y) = (I(x, y) − µ)/σ, x, y ∈ {1..21} is
applied, where µ is the mean and σ is the standard deviation of I over MR.

See Figure 3 for examples of frame normalisations.
The twelve normalisation parameters (6 for geometric and 3 × 2 for photometric nor-

malisations) are stored along with Î . When considering a pair of frames for a correspon-
dence, these parameters are combined to provide the between-frame transformation (both
geometric and photometric). An application-specific constraints can be applied here to
prune the potential matches. Typical constraints may include: allowing only small scale
changes for images taken from approximately constant distance from the objects, reject-
ing significant rotations when upright camera and object orientations can be assumed,
allowing for only small illumination changes for images taken in controlled environment,
and many others.
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Figure 4: Examples of correspondences established between frames of a training image
(left) and a test image (right).

Local correspondences are established by correlating Îs that invariantly represents
colour measurements from the respective MRs. Figure 4 shows an example of corre-
spondences found for a pair of images from the COIL-100 database. The choice of the
best strategy for the computation of the inter-image matching score from individual lo-
cal correspondences depends on the application. Possible strategies generally differ in
the emphasis put on the global model consistency. An extreme approach, used in exper-
iments in this paper, is to ignore the global consistency at all. Counting the number of
established local correspondences gives a reasonable estimate of the object similarity; the
higher the number of similar local features, the higher the matching score. On the COIL-
100 database, this strategy works well when images of the same object viewed from very
different viewing angles (up to 180◦) are matched.

The opposite approach is applicable when the model images are segmented and known
to be planar, as may be the case when recognising trademarks, logos, billboards or traffic
signs. The model appears in the unknown scene (test image) considered only as an affine
deformation of the training image. Matching score can be then estimated by maximising
the correlation between the whole segmented model and the test image; the set of trans-
formations considered is obtained from local frame correspondences. Other approaches
may exploit deformable models, or epipolar geometry constraint for rigid 3D objects.

118



5 Experiments on COIL-100 and SOIL-47 databases

COIL-100. The Columbia Object Image Library (COIL-100) [1] is a database of colour
images of 100 different objects, where 72 images of each object were taken at pose in-
tervals of 5◦. The images were preprocessed so that either the object’s width or height
(whatever is larger) fits the image size of 128 pixels. The COIL-100 (or more often its
subset COIL-20) has been widely used in object recognition experiments. In Figure 5
several objects from the database are shown.

Figure 5: Several objects from COIL-100 database

Table 1 compares the achieved recognition rates with other object recognition meth-
ods. Results are presented for five experimental set-ups, differing in the number of train-
ing views per object. Decreasing the number of training views increases demands on the
method’s generalisation ability, and on the insensivity to image deformations. The LAF
approach performs best in all experiments, regardless of the number of training views.
For only four training views, the recognition rate is almost 95%, demonstrating the re-
markable robustness to local affine distortions. In the case of 18 training views per object,
only 5 out of the total 5400 test images were misclassified. Table 2 summarises achieved
recognition rates up to rank 4. Note that we were not building any kind of multi-view
object model. If more than one view per object was available for the training, these views
were treated independently, as if of different objects.

Average recognition time for a single image is 0.8 sec (on 1.4 GHz PC) for the case
of four training views per object (i.e. matching every test image to 400 models). In order
to evaluate the potential of the method, we have not implemented any kind of hypotheses
pruning or indexing into our matching algorithm, evaluating all the correlations.

training views per object 18 8 4 2 1
total test views 5400 6400 6800 7000 7100
LAF training views 0◦ + k20◦ 0◦ + k45◦ 45◦ + k90◦ 0◦, 90◦ 0◦

LAFs 99.9% 99.4% 94.7% 87.8% 76.0%
SNoW / edges [17] 94.1% 89.2% 88.3% - -
SNoW / intensity [17] 92.3% 85.1% 81.5% - -
Linear SVM [17] 91.3% 84.8% 78.5% - -
Spin-Glass MRF [3] 96.8% 88.2% 69.4% 57.6% 49.9%
Nearest Neighbour [17] 87.5% 79.5% 74.6% - -

Table 1: COIL-100: Recognition rate (rank 1), in comparison to other methods

Due to the symmetric nature of many objects in the COIL-100 database, not only the
number of training views, but also the selection of viewing angles for the training affects
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# of training views per object
Rank 18 8 4 2 1

= 1 99.9% 99.4% 94.7% 87.8% 76.0%
≤ 2 99.9% 99.7% 96.8% 92.2% 83.2%
≤ 3 99.9% 99.7% 97.3% 95.0% 86.9%
≤ 4 99.9% 99.7% 97.7% 96.2% 89.3%

Table 2: COIL-100: Recognition rate, ranks 1 to 4

the recognition rate. An example is illustrated in figure 7 for the case of two training
views. The pictures show the distribution of recognition rate over test view angles, accu-
mulated for all the objects. In the left image, single training view at 0◦ was used – the
recognition rate is 76%. The increased recognition rate in the 180◦ views is an indication
that many objects appear similar when viewed from the opposite side. Adding a second
training view at 180◦ (middle image), the recognition rate increases to 81.4%, and adding
a training view at 90◦ (right image), the recognition rate reaches 87.8%. In the case of
a single training view, the recognition rate varies from the worst 68.4% (for 270◦ train-
ing) to the best 77.3% (for 155◦), with the average value being 74.1%.1 The potentially
interesting issue of selecting optimal set of views for each object was not pursued.

Figure 6: Several object from the SOIL-47 database

SOIL-47. We have also performed experiments on another publicly available image
database, SOIL-47 [2]. Figure 6 shows few objects from the database. We have used
identical experiment setup as in [5], i.e. using the same subset of 24 box-like objects,
using one training view per object, and test view angles differing up to 45◦ (in [5] referred
as views 6–15). The training images had the resolution twice as high as the test views.
Our method achieved 100% recognition. Results are summarised in Table 3.

Method LAFs Graph matching Geom. Hashing Geom. Alignment
Recognition rate 100% 73% 63% 50 %

Table 3: SOIL-47: Recognition rate, in comparison to other methods [5]

Occlusions on the COIL-100. We have simulated occlusion of the objects by erasing
one half of the test images. The system was trained using full images, again with five

1COIL-100 experiments are therefore repeatable (and comparable) only if training views are listed; the
number of training views is insufficient
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Figure 7: The effect of choice of training views: recognition rate as a function of the test
view angle for (a) a single training view at 0◦, (b) two training views at 0◦ and 180◦, and
(c) two training views at 0◦ and 90◦

different numbers of training views. Figure 8 shows examples of the occluded test images.
Recognition rates are summarised in Table 4.

Figure 8: COIL-100: Examples of test images for the occlusion experiment

training views per object 18 8 4 2 1
recognition rate 92.6% 89.1% 82.6% 69.9% 63.3%

Table 4: COIL-100: Recognition rate for occluded images

6 Conclusions

In this paper, a novel procedure for appearance based object recognition was introduced.
Local affine frames were obtained on distinguished regions of a data-dependent shape,
and direct comparison of geometrically and photometrically normalised image patches
allowed to establish robust and discriminative local inter-image correspondences. Se-
lective matching at the level of local features enabled successful recognition of object
even when the objects were seen from angles differing by 180◦ from the training view.
Successful experiments on the COIL-100 image library demonstrated the potential of the
method by achieving 99.9% recognition rate for 18 training views per object. Even for a
single training view, the correct model appear among the top four for almost 90% of the
images. Robustness to severe occlusions was demonstrated by only a moderate decrease
of recognition performance in an experiment where half of each test image was erased. In
experiments on the SOIL-47 database, 100% recognition rate was achieved when using
single training view and test views differing up to 45◦.
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