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Abstract

In this paper, we construct a new class of deformable models using
new biorthogonal wavelets, named Generalized Hermite Distributed
Approximating Functional (g-HDAF) Wavelets. The scaling functions
of this new family are symmetric and the corresponding wavelets op-
timize their smoothness for a given number of vanishing moments. In
addition, we embed these multiresolution deformable models to the
physics-based deformable model framework and use them for fitting
3D range data. We have performed a number of experiments with
both synthetic and real data with very encouraging results.

1 Introduction

Modeling shapes is an integral part of computer vision driven by the need for
shape reconstruction from sampled data and shape recognition. The deformable
superquadrics introduced by Terzopoulos and Metaxas [13] represent the physics-
based unification of the parameterized and the free-form modeling paradigms. The
geometric structure of the models supports both global deformation parameters,
which efficiently represent the gross shape features of an object, and local defor-
mation parameters, which capture shape details. An important benefit of this
global/local descriptive power in the context of computer vision is that it can
potentially satisfy the often conflicting requirements of shape reconstruction and
shape recognition. However, these models do not exhibit a smooth transition in
the number of parameters required by the range of generated shapes.

To overcome this shortcoming, Vemuri and Radisavljevic [15] introduced a mul-
tiresolution hybrid modeling scheme that used an orthonormal wavelet basis [10].
By virtue of the multiresolution wavelet representation, their hybrid models have
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the unique property of being able to scale smoothly from global to local deforma-
tions depending on the number of the coefficients used to represent them. Thus,
one may choose a set of wavelet coefficients at a particular decomposition level
from the multiresolution representation of the hybrid model to augment the global
parameters of the model.

In this paper, we construct a new class of multiresolution deformable su-
perquadrics with respect to new biorthogonal wavelets, named Generalized Her-
mite Distributed Approximating Functional (g-HDAF) Wavelets. The scaling
functions of this new family are symmetric and the corresponding wavelets exhibit
enhanced smoothness for a given number of vanishing moments. In addition, we
embed these multiresolution deformable models into the physics-based deformable
model framework and use them for fitting 2D and 3D data. Our contributions are
the following: 1) the development of a new class of linear phase wavelets (note that
their associated scaling functions are symmetric with respect to the origin), 2) the
development of a new class of deformable models using this new orthogonal wavelet
basis, and 3) a comparative study of the wavelet transform of a deformable model’s
displacement map with respect to various commonly used orthonormal wavelets.
The multiresolution wavelet basis that we have developed allows us to construct
compact and diverse shape representations.

Our motivation to develop a new class of linear-phase wavelets stems from
the fact that there are no known classes of well-localized (in the time domain)
symmetric multiresolution filters. In fact, it is known that orthonormal compactly
supported scaling functions cannot be symmetric (with the exception of the Haar
scaling function) [2]. An important property of these newly developed g-HDAF
wavelets is their enhanced smoothness as compared to the smoothness of the most
commonly utilized classes of compactly supported orthonormal wavelets. This
higher degree of smoothness together with their symmetry will increase the sparsity
of the wavelet representation of the local deformations of the deformable models.

2 Methods

2.1 Biorthogonal g-HDAF wavelets

For the purposes of this paper, we construct a new class of Quadrature Mirror
Filters (QMF) which we name generalized HDAF biorthogonal filters. Hermite
Distributed Approximating Functionals (HDAFs) were introduced by Hoffman
and Kouri in [4, 5]. Nonetheless HDAFs are not periodic functions so they are not
QMFs [8]. Several classes of wavelets have been generated inspired by the original
HDAFs with varying degrees of success (e.g., [6]).

Recently, we presented how to use HDAFs to construct low pass filters for
orthonormal univariate scaling functions (which we dubbed modified HDAF scaling
functions), which produced results that improved previous constructions [8]. An
HDAF hN,σ is defined in the Fourier domain by:

ĥN,σ (ξ) = e−
4π2ξ2σ2

2

N∑
n=0

(
4π2ξ2σ2

)n

2nn!
, (1)
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where N ∈ Z
+ and σ ∈ R

+. We modified the HDAF as follows [8]:

m0(ξ) :=


ĥN,σ(ξ) if |ξ| ≤ 1

4√
1 − ĥN,σ(ξ − 1

2 )2 if 1
4 ≤ ξ ≤ 1

2√
1 − ĥN,σ(ξ + 1

2 )2 if − 1
2 ≤ ξ ≤ − 1

4 ,

and we extended m0 1-periodically. We also imposed the condition m0( 1
4 ) =

ĥN,σ( 1
4 ) =

√
2

2 . Then, m0(ξ) satisfied the orthogonality condition |m0(ξ)|2 +∣∣m0(ξ + 1
2 )

∣∣2 = 1, ξ ∈ R, and φ̂(ξ) :=
∏∞

j=1 m0

(
ξ
2j

)
, ξ ∈ R is an orthogonal

scaling function, which we called m-HDAF scaling function. For every N , the
unique σ is determined by ĥN,σ( 1

4 ) =
√

2
2 .

In this paper, we introduce a new family of biorthogonal infinite impulse re-
sponse (IIR) wavelet filters based on the HDAFs, which we name generalized
HDAF wavelets. Recall that the auto-correlation of a function φ is defined by:

Φ(x) =
∫

φ(y)φ(x − y) dy .

Clearly, Φ̂(ξ) = φ̂2(ξ), so Φ̂(2ξ) = m2
0(ξ)Φ̂(ξ). Since Φ̂ is absolutely integrable and

φ is in L2(R), one can assert that Φ can be replaced by a uniformly continuous
function. With this remark in mind, we consider Φ to be uniformly continuous.

One can also verify that Φ(k) = δk,0, for all k ∈ Z, and

M0(ξ) + M0(ξ +
1
2
) = 1, (2)

where M0(ξ) = m2
0(ξ). We refer to the filters that satisfy Eq. (2) as interpolating

filters, and to such a Φ as an interpolating scaling function.

Proposition 1. The following is true: Φ ∈ L2(R), and the integer translates of
Φ(x) form a Riesz basis of their closed linear span, i.e., there exist two constants
0 < c ≤ C < ∞, such that

c ≤
∑
k∈Z

|Φ̂(ξ + k)|2 ≤ C

where c = e−
π4σ4

9 and C = 1.

Proof: Since for all ξ ∈ R, Φ̂(ξ) =
∏∞

k=1 M0( ξ
2k ) and M2

0 (ξ) + M2
0 (ξ + 1

2 ) ≤
[M0(ξ) + M0(ξ + 1

2 )]2 = 1. A modification of the corresponding argument in [9]
shows that Φ ∈ L2(R).

Since
∑

k∈Z
|φ̂(ξ + k)|2 = 1, we have∑

k∈Z

|Φ̂(ξ + k)|2 =
∑
k∈Z

|φ̂(ξ + k)|4 ≤
∑
k∈Z

|φ̂(ξ + k)|2 = 1.

Since |Φ̂(ξ+k)|2 is an 1-periodic function, we can assume that ξ ∈ [− 1
2 , 1

2 ]. Hence,
− 1

2 ≤ ξ
2k ≤ 1

2 for every non-negative integer k. Therefore, M0( ξ
2k ) = ĥ2

N,σ( ξ
2k ).
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Moreover,

Φ̂(ξ) =
∞∏

k=1

e−( 2πξσ

2k )2

[
N∑

n=0

( 2πξσ
2k )2n

2nn!

]2

=

[ ∞∏
k=1

e−( 2πξσ

2k )2

] [ ∞∏
k=1

N∑
n=0

( 2πξσ
2k )2n

2nn!

]2

= e−
4π2ξ2σ2

3

[ ∞∏
k=1

N∑
n=0

( 2πξσ
2k )2n

2nn!

]2

≥ e−
π2σ2

3 .

This leads to
∑

k∈Z
|Φ̂(ξ + k)|2 ≥ Φ̂2(ξ) ≥ e

−2π2σ2
3 .

Proposition 1 implies that Φ is an interpolatory Riesz scaling function asso-
ciated with an MRA. We say that a function F is stable, if F and its integer
translates form a Riesz basis of their closed linear span.

To obtain a numerically stable decomposition and reconstruction algorithm,
we need another function Φd. The integer translates of Φ and Φd must form a
pair of dual Riesz bases. In other words, Φ and Φd must be stable and satisfy the
following biorthogonal conditions:

〈Φ,Φd(· − k)〉 = δk,0 k ∈ Z, (3)

where 〈·, ·〉 is the inner product of L2(R), and in this case Φ and Φd are dual
functions. In the following, we present two different methods for constructing the
dual scaling function Φd. The first method is used to construct Φd directly from
Φ. The second method is used to design a dual filter Md

0 , and then construct Φd

through the filter Md
0 . The filter Md

0 , which is a 1-periodic function, is a dual
filter of a filter M0, if

M0(ξ)Md
0 (ξ) + M0(ξ +

1
2
)Md

0 (ξ +
1
2
) = 1 (4)

for all ξ in [− 1
2 , 1

2 ]. Note that M may have more than one dual filters. It is well
known that if Φ and Φd are stable and the corresponding lowpass filters satisfy Eq.
(4), then they are dual functions. However, Eq. (4) is only a necessary condition
for Φ and Φd to be a dual pair.
Method 1: The dual scaling function Φd can be defined as follows:

Φ̂d(ξ) =
Φ̂(ξ)∑

k∈Z
|Φ̂(ξ + k)|2 .

Clearly, the functions Φ and Φd are biorthonormal, i.e., 〈Φ,Φd(· − k)〉 = δk,0.
Let c and C be the lower and the upper bound of the stable function Φ. Then
Φd is also stable with lower bound C−1 and upper bound c−1, respectively. This
is due to the fact that

∑
k∈Z

|Φ̂(ξ + k)|2 is 1-periodic and
∑

k∈Z
|Φ̂d(ξ + k)|2 =
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(
∑

k∈Z
|Φ̂(ξ + k)|2)−1. Thus, Φ and Φd is a pair of dual functions. The dual

frequency response is given by:

Md
0 (ξ) =

φ̂d(2ξ)

φ̂d(ξ)
=

M0(ξ)
M2

0 (ξ) + M2
0 (ξ + 1

2 )
. (5)

Method 2: Given an interpolatory FIR filter, the construction of its dual filters is
provided in a number of papers [7, 12]. In this paper, we extend the work of [7]
from FIR to IIR.

Proposition 2. Let M0 be a lowpass filter satisfying Eq. (2). Then, for each
J ∈ Z

+ the filter,

Md
0 =

(
2J

J

)
MJ

0 (1 − M0)J +
J−1∑
j=0

(
2J

j

)
M2J−1−j

0 (1 − M0)j (6)

is a dual filter of M0 with Md
0 (0) = 1.

Proof: Using Eq. (2) and
(
2J
j

)
=

(
2J

2J−j

)
, we have

Md
0 (ξ +

1
2
) =

(
2J

J

)
MJ

0 (ξ +
1
2
)[1 − M0(ξ +

1
2
)]J

+
J−1∑
j=0

(
2J

j

)
M2J−1−j

0 (ξ +
1
2
)[1 − M0(ξ +

1
2
)]j

=
(

2J

J

)
MJ

0 (ξ)[1 − M0(ξ)]J

+
J−1∑
j=0

(
2J

2J − j

)
[1 − M0(ξ)]2J−1−jM j

0 (ξ)

Hence,

M0(ξ)Md
0 (ξ) + M0(ξ +

1
2
)Md

0 (ξ +
1
2
) = [M0(ξ) + (1 − M0(ξ))]

2J = 1. (7)

Finally, since M0(0) = 1, using the definition of Md
0 , we conclude that Md

0 (0) =
1.

Let Md
0 be given by Eq. (6). Then, the dual filter Md

0 satisfies Md
0 (ξ) =

1+O(|ξ|). Since the infinite product Φ̂d(ξ) =
∏∞

k=1 Md
0 ( ξ

2k ) converges uniformly on
any compact set, it is continuous. This implies that Φ̂d is well defined. Therefore,
if the function Φd is in L2(R) and Φd and its shifts form a Riesz basis, then Φd

will be a dual scaling function for Φ.
In summary, using Method 1 we can directly construct a stable dual scaling

function Φd of the scaling function Φ. Using Method 2, we can easily get a dual
filter Md

0 for M0. Eq. 7 establishes that these two filters induce a perfect recon-
struction filter bank. What remains to be checked is whether the function Φd is in
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L2(R) and Φd and its integer shifts form a stable set. In our work, we used Method
2 to obtain the dual filter Md

0 of M0 with J = 1, i.e., Md
0 = M0(ξ)[3 − 2M0(ξ)].

The main reason being that for any N , the maximum values of the filters Md
0

obtained from Eq. (5) and Eq. (6) are 1
2 (1 +

√
2) and 1.125, respectively. These

values are achieved at the same point ξ0 ∈ [0, 1
2 ] with M0(ξ0) = 3

4 .
Let’s assume that Md

0 obtained by Method 2. It is not difficult to show that
1) M0 and Md

0 are C1 functions at the points k ± 1
4 for all k ∈ Z, 2) at the points

k± 1
2 , M0 and Md

0 are C∞ functions for odd N and CN functions for even N ; and
3) the resulting biorthogonal wavelets have 2N + 2 vanishing moments.

2.2 g-HDAF Multiresolution Deformable Models for
Shape Modeling

The models used in this work are three-dimensional surface shape models. The
material coordinates u = (u, v) of a point on these models are specified over a
domain Ω [11, 13]. The position of a point (with material coordinates u) on a de-
formable model at time t with respect to an inertial reference frame Φ is given by:
Φx(u, t) = Φt(t)+ Φ

φR(t) φp(u, t), where Φt is the position of the origin O of the
model frame φ with respect to the frame Φ (the model’s translation), and Φ

φR is
the matrix that determines the orientation of φ with respect to Φ. φp(u, t) denotes
the position of a model point with material coordinates u w.r.t. the model frame.
It can be expressed as the sum of a reference shape φs(u, t) and a local displace-
ment φd(u, t): φp(u, t) = φs(u, t) + φd(u, t). The reference shape, s, captures
the salient shape features of the model and it is the result of applying global defor-
mations, T, to a geometric primitive e = [ex, ey, ez]�. The geometric primitive e is
defined parametrically in u ∈ Ω and has global shape parameters qe. For the pur-
poses of this research, we employ a superquadric e(u, v):[−π

2 , π
2 ) × [−π, π) → RI 3,

whose global shape parameters are qe = [a1, a2, a3, ε1, ε2]�. A superquadric sur-
face is defined by a vector sweeping a closed surface in space by varying the material
coordinates u and v. The parametric equation of a superquadric is given by [1]:

e(u) = [a1Cu
ε1Cv

ε2 , a2Cu
ε1Sv

ε2 , a3Su
ε1 ]�,

where −π
2 ≤ u ≤ π

2 , −π ≤ v ≤ π, Su = sgn(sin u)| sin u|ε, Cu = sgn(cos u)| cos u|ε,
and a1, a2, a3 ≥ 0 are the parameters that define the superquadric size, and ε1 and
ε2 are the “squareness” parameters in the latitudinal and longitudinal planes, re-
spectively. Local displacements d are computed using finite elements. Associated
with every finite element node i is a nodal vector variable qd,i. We collect all the
nodal variables into a vector of local degrees of freedom qd = (. . . ,q�

d,i, . . . )
�. If

we denote the original nodal discretization at resolution j = 0 by the vector α0,
then α0 = Hdqd (analysis) and qd = Hα0 (reconstruction), where the matrices H
and Hd correspond to the g-HDAFs and the vector qd,i is hierarchically expressed
with respect to the new biorthonormal basis. We compute the local displacement
d based on the finite element theory as d(u, v) = Sqd(u, v). Here, S is the shape
matrix whose entries are the finite element shape functions.
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2.3 Surface Fitting

Through the application of Lagrangian mechanics, the geometric parameters of
the deformable model, the global (parameterized) and the local (free-form) de-
formation parameters, and the six degrees of freedom of rigid-body motion are
systematically converted into generalized coordinates or dynamic degrees of free-
dom as described in [11]. The resulting Lagrangian equations are of the form
q̇ + Kq = fq, for shape estimation, where K is the stiffness matrix, the fq are
the generalized external forces that act on the model, and the q are the model’s
generalized coordinates. The damping and the stiffness matrices determine the
viscoelastic properties of the deformable model. Expressing the stiffness matrix
in the g-HDAF wavelet basis is explained in detail in [8]. In physics-based shape
estimation techniques, data points apply forces to the deformable model. These
forces are converted to generalized 3D forces. Based on these forces the model will
deform to minimize the discrepancy between the model and the data.

3 Experimental Results

We have applied the new multiresolution shape models for recovering the 3D sur-
face shape from synthetic and real range data. We have assessed the accuracy,
limitations, and advantages of the g-HDAF deformable models by comparing the
performance of the multiresolution deformable models constructed using g-HDAFs
(Gn), m-HDAFs (Hn), Daubechies (Dn), Symlets (Sn) [2], the Butterworth filter
(Bn) [3], the orthogonal spline filter (M) [10], the orthogonal fractional splines
(Fn) [14] with X vanishing moments, Coiflets (Cn) with 2X vanishing moments,
and the orthogonal spline with 4 vanishing moments. Due to space restrictions,
we present only selected results. Complete results for a variety of data and the
complete set of the wavelet bases we examined can be found at [8].

In the first experiment, we applied our technique to fit synthetic data obtained
from a graphical model of a chess piece. Fig. 1(a) depicts the data, Fig. 1(b) depicts
the estimated shape model, while Figs. 1(c-e) depict the estimated (by the fitting
process) displacement maps qdx

(u, v), qdy
(u, v) and qdz

(u, v), respectively. In the
second experiment, we applied our technique to fit female breast surface data.
Fig. 1(f) depicts the breast range data obtained from a subject, Fig. 1(g) depicts
the estimated shape model, while Figs. 1(h-j) depict the estimated displacement
maps qdx

, qdy
and qdz

, respectively.
Table 1 shows the RMSE of the reconstructed maps using the LL subband

only. To evaluate the efficiency of the g-HDAF filter, Table 2 shows the RMSE
performance (R) for a sequence of the estimated displacement maps if all high-
pass subbands are suppressed. The corresponding results for various filters are
also included. Table 3 contains the number of transform coefficients of one level
decomposition that can be ignored if we require the RMSE of the reconstructed
qdx

(u, v), qdy
(u, v) and qdz

(u, v) to be 0.0001. Applying this procedure to a se-
quence of the estimated displacement maps, Table 4 depicts the percentage of
the insignificant coefficients when the RMSE of the reconstructed maps is 0.0001.
Again, for comparison, other filters are included in this table. From above four
tables, we can see that the g-HDAF filters perform best among all the filters exam-
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Figure 1: (a,f) Synthetic data from a graphics model of a chess piece and real range
data from a female patient’s breast. (b,g) The estimated deformable models, and
(c-e,h-j) depiction of qdx

(u, v), qdy
(u.v) and qdz

(u, v), respectively.

ined in this paper. Since our filters are symmetric, we use the symmetric extension
of the functions qdx

, qdy
and qdz

, and the most favorable extension for the other
families.

The main reasons for obtaining an overall improved performance using the
proposed filters are the following. First, all g-HDAF biorthonormal wavelets are
literally linear phase wavelets. The linear phase, which is the result of symmetry of
the corresponding low pass filters, enhances the sparsity of wavelet decompositions,
especially if the input matrix is symmetrically padded. Second, g-HDAFs appear
to be smoother than their Daubechies / Symlets / Coiflets counterparts with the
same number of vanishing moments. In addition, the symmetry of the low pass
filters reduces the computational complexity. However, one possible drawback
could be the significant length of g-HDAF filters (in this paper, we used filters
with 23 filter taps for M0 and 45 taps for Md

0 ). Although, g-HDAFs have infinite
length only a small portion of their filter taps, located around the origin, plays
the significant role in the wavelet transform. This is due to the good localization
of the g-HDAF scaling functions and wavelets in the time domain, which, in turn,
is due to the optimal localization of the HDAFs in the time domain. Note, also,
that the length of the significant part of the low pass filters remains almost the
same for any number of vanishing moments.

4 Concluding Remarks

In this paper, we presented the construction of a new class of linear phase wavelets
(g-HDAFs) and the development of a new class of deformable models using this
new biorthogonal wavelet basis. Experimental results indicate that the g-HDAF
multiresolution deformable models achieve higher energy compaction than those
based on conventional wavelets. This attribute makes them useful for shape re-
construction, shape recognition, and geometry compression.
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Table 1: The estimated (by the fitting process) displacement maps qdx
, qdy

, qdz

are decomposed one level by interpolating g-HDAF filters (Gn) and m-HDAF
filters (Hn). The table shows the RMSE (R) of the reconstructed maps if all the
detail subbands are suppressed.

qdx
qdy

qdz
qdx

qdy
qdz

W R R R W R R R

G2 1.1625 1.3390 2.5604 H2 1.5623 1.8138 3.3715
G3 1.1118 1.2789 2.4434 H3 1.3706 1.5867 2.9955
G4 1.0826 1.2440 2.3740 H4 1.2737 1.4732 2.7961
G5 1.0631 1.2205 2.3269 H5 1.2160 1.4055 2.6732
G6 1.0489 1.2033 2.2922 H6 1.1776 1.3602 2.5894
G7 1.0380 1.1900 2.2653 H7 1.1501 1.3276 2.5281
G8 1.0292 1.1794 2.2436 H8 1.1293 1.3028 2.4809
G9 1.0220 1.1705 2.2257 H9 1.1128 1.2831 2.4432
G10 1.0158 1.1631 2.2104 H10 1.0995 1.2671 2.4122
G11 1.0106 1.1566 2.1973 H11 1.0884 1.2537 2.3861
G12 1.0060 1.1510 2.1858 H12 1.0789 1.2423 2.3639
G13 1.0019 1.1461 2.1757 H13 1.0708 1.2324 2.3445
G14 0.9982 1.1417 2.1666 H14 1.0636 1.2238 2.3275
G15 0.9949 1.1377 2.1585 H15 1.0574 1.2161 2.3124

Table 2: The estimated (by the fitting process) displacement maps obtained from
the proposed deformation model are decomposed one level by g-HDAF filters (Gn),
Daubechies’ orthogonal filter (Dn), least symmetric orthogonal filters (Sn), Coiflets
(Cn), the orthogonal spline filter (M), the Butterworth filters (Bn), and the frac-
tional spline filters (Fn). Depicted are the mean and variance of the reconstructed
maps if all the detail subbands are suppressed.

W (Mean,Var.) W (Mean,Var.) W (Mean,Var.) W (Mean,Var.)

G2 (0.0019, 0.0036) H2 (0.0030,0.0059) D4 (0.0042,0.0078) C4 (0.0032,0.0058)
G4 (0.0017, 0.0033) H4 (0.0021,0.0041) D8 (0.0030,0.0055) M (0.0017,0.0032)
G6 (0.0017, 0.0032) H6 (0.0019,0.0037) D12 (0.0034,0.0064) B5 (0.0035,0.0065)
G8 (0.0017, 0.0032) H8 (0.0018,0.0035) S4 (0.0034,0.0062) B9 (0.0033,0.0061)
G10 (0.0016 0.0031) H10 (0.0017,0.0034) S8 (0.0031,0.0056) B13 (0.0032,0.0059)
G12 (0.0016 0.0031) H12 (0.0017,0.0033) S12 (0.0031,0.0058) F4 (0.0033,0.0062)
G14 (0.0016 0.0031) H14 (0.0017,0.0032) S14 (0.0031,0.0058) F12 (0.0032,0.0059)

Table 3: The estimated (by the fitting process) displacement maps qdx
, qdy

, qdz

are decomposed one level by interpolating g-HDAF filters (Gn). The table shows
how many coefficients can be ignored if the RMSE of the reconstructed maps is
0.0001.

qdx
qdy

qdz
qdx

qdy
qdz

qdx
qdy

qdz

W LS LS LS W LS LS LS W LS LS LS

G2 201988 201156 203212 H2 201504 200480 202912 D8 201568 200800 203424
G4 202012 201196 203180 H4 201824 200928 203360 S4 201632 200672 203360
G6 202012 201212 203140 H6 201888 200992 203424 S8 201568 200800 203424
G8 202020 201220 203116 H8 201888 201056 203360 C4 201696 200864 203360
G10 202020 201220 203100 H10 201888 201056 203360 M 201952 201120 203296
G12 202020 201228 203084 H12 201952 201120 203296 B9 204000 204128 208288
G14 202020 201228 203076 H14 201952 201120 203296 F8 204896 204704 208544

311



Table 4: The estimated (by the fitting process) displacement maps obtained from
the proposed deformation model are decomposed one level. The table shows how
many coefficients (on average) can be ignored if the RMSE of the reconstructed
maps is 0.0001.

W (Mean,Var.) W (Mean,Var.) W (Mean,Var.) W (Mean,Var.)

G2 (0.8083 0.0536) H2 (0.8035,0.0523) D4 (0.7050,0.2107) C4 (0.7066,0.2088)
G4 (0.8083 0.0537) H4 (0.8050,0.0519) D8 (0.7072,0.2071) M (0.8052,0.0520)
G6 (0.8083 0.0537) H6 (0.8051,0.0519) D12 (0.7008,0.2169) B5 (0.7594,0.1370)
G8 (0.8083 0.0537) H8 (0.8052,0.0520) S4 (0.7058,0.2099) B9 (0.7536,0.1460)
G10 (0.8083 0.0537) H10 (0.8052,0.0520) S8 (0.7057,0.2104) B13 (0.7512,0.1495)
G12 (0.8083 0.0537) H12 (0.8052,0.0520) S12 (0.7150,0.1903) F4 (0.7622,0.1316)
G14 (0.8082 0.0537) H14 (0.8052,0.0520) S14 (0.7143,0.1918) F12 (0.7540,0.1462)
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