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Abstract

Given that most current Structure From Motion (SFM) algorithms cannot re-
cover true motion estimates, it is important to understand the impact such
motion errors have on the shape reconstruction. In this paper, we present a
theoretical model to understand the impact that errors in the motion estimates
have on shape recovery. Using this model, we focus on the recovery of sec-
ond order shape under different generic motions, each of which presenting
different degrees of error sensitivity. Understanding such different distortion
behaviour is important if we want to design better fusion strategy with other
shape cues.

1 Introduction

In spite of the best efforts of a generation of computer vision researchers, we still do
not have a practical and robust system for reconstructing shape from a sequence of mov-
ing imagery. Current Structure From Motion (SFM) algorithms perform well only in
restricted domains, and different types of algorithms do well on quite different types of
sequences. In real life, shape perception typically occurs in a context where a rich nexus
of cues are available. If we are able to understand the limits of applicability of the SFM
algorithms, in particular the resultant distortion in depth recovered under different motion-
scene configurations, it then becomes possible to fuse several cues together. Few works
have been devoted towards understanding the structural distortion arising from errors in
the motion estimates. This paper is a step towards this direction, especially with regards
to the recovery of second order curved surfaces from the motion cue.

It is well known that SFM algorithms that recover structure parameters, especially
those of second order quantities such as curvatures, are sensitive to various types of errors
such as noise [1, 8]. However, not many researchers have addressed explicitly the prob-
lem of reconstruction accuracy given some errors in the 3-D motion estimates. Given that
most current structure from motion algorithms cannot recover true motion estimates, our
investigation seeks to clarify the impact such motion errors have on the shape estimates;
in particular, we attempt to understand the severity of the resultant shape distortion un-
der different motion-scene configurations. Are there generic motion types that can render
depth recovery more robust and reliable? What are the likely problem conditions of mo-
tion cue? If such understanding could be achieved, we could use other shape cues to
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supplement motion cue when the latter is inadequate so as to achieve robust shape per-
ception.

In this paper, iso-distortion framework [2] is employed to analyze the errors in second
order shape recovery, with regards to local representations such as normal curvatures and
shape index [5]. As was shown in [3], there exists certain dichotomy between forward
and lateral motion in terms of depth recovery. For instance, useful informations like
depth order is preserved under a lateral motion in a small field of view, even though it
is difficult to disambiguate translation and rotation in such case; while under forward
motion, a robust recovery of 3-D structure is much more difficult. In this paper, we make
explicit the local shape distortion properties under lateral motion and forward motion.

The main contribution of this paper lies in the elucidation of the impact of errors
in 3-D motion estimates on the second order shape recovery in a systematic manner. In
particular, our findings show that the second order shape is recovered with varying degrees
of uncertainty depending on the types of 3-D motion executed. Furthermore, we also
make clear that different shapes exhibit different sensitivities in their recovery to errors in
3-D motion estimates. Evidently, these results remind us the importance of understanding
the behaviour of various SFM algorithms under different motion-scene configurations,
which in turn might permit a better fusion strategy with other shape cues.

2 Background

2.1 Local shape representation

To begin, we look at a smooth local surface patch represented by its Taylor series up to
the second order terms:
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1

2

�
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2 + kmaxY
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+ d+O3(X;Y ) (1)

where kmin; kmax are the two principal curvatures with kmin < kmax. This represents a
canonical case whereby the observer is fixating straight ahead at the surface patch located
at a distance d unit away, and the X�axis and the Y�axis are aligned with principal
directions (directions of principal curvatures). Rotating the aforementioned surface patch
around the Z�axis by � in the anti-clockwise direction, we obtain a more general surface
patch whose principal directions do not coincide with the X � Y frame:
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Notice that in either cases the local shape measurements at the fixation point (X=Y=0) are
good indication of the global second order shape of the surface patch. In the forthcoming
analysis, we focus on the second order shape quantities and thus neglect the O 3(X;Y )

term in Equations (1) and (2).
Local representations of curved surfaces include the classical differential invariants

of Gaussian and mean curvatures which are computed based on the principal curvatures.
A good shape descriptor should correspond to our intuitive idea of shape: shape is in-
variant under translation and rotation, and more importantly, independent of the scaling
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operation. Principal curvatures, as well as the Gaussian and mean curvatures satisfy the
former but do not satisfy the latter condition because they still contain the information of
the amount of curvature. Koenderink [5] proposed two measures of local shape: shape
index (S) and curvedness (C) as alternatives to the classical differential shape invariants.
S and C are defined respectively as follows:

S =
2

�
arctan

kmin + kmax

kmin � kmax

(3)

C =

r
k2
min

+ k2
max

2
(4)

S is a number in the range of [�1;+1] and obviously scale invariant and C is a positive
number with the unit m�1. Shape index and curvedness provide us with a description of
3-D quadratic surfaces in terms of their types of shape and amount of curvature.

When shape is reconstructed based on motion cue, it is more appropriate to use shape
index as the local measurement of shape type rather than other differential invariants.
Due to the well-known ambiguity of SFM, the scale of the recovered objects and the
speed of translation can only be determined up to a common factor. The recovered scale
information is thus meaningless unless additional information is available. Using shape
index, we at least know that it can be estimated correctly when the SFM algorithm gives
correct result.

2.2 General nature of distortion

This section derives the distortion in the recovered shape given that the motion parameters
are imprecise. In the most general case, if the observer is moving rigidly with respect to
its 3-D world with a translation (U; V;W ) and a rotation (�; �; 
), the resulting optical
flow (u; v) at an image location (x; y) can be expressed as the well-known equation [6]:
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where (x0; y0) = (f U

W
; f V

W
) is the focus of expansion (FOE), Z is the depth of a scene

point, utrans; vtrans are the horizontal and vertical components of the flow due to trans-
lation, and urot; vrot the horizontal and vertical components of the flow due to rotation,
respectively.

Since the depth can only be derived up to a scale factor, we set W = 1. Then the
scaled depth of a scene point recovered can be written as

Z =
(x� x0; y � y0) � n

(u� urot; v � vrot) � n

where n is an unit vector which specifies a direction.
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If there are some errors in the estimation of the intrinsic or extrinsic parameters, this
will in turn cause errors in the estimation of the scaled depth, and thus a distorted version
of the space will be computed. Denoting the estimated parameters with the hat symbol
(ˆ) and errors in the estimated parameters with the subscript e (where the error of any
estimate p is defined as pe = p � p̂), the estimated depth Ẑ can be readily shown to be
related to the actual depth Z as follows:

Ẑ = Z

�
(x � x̂0; y � ŷ0) � n

(x � x0; y � y0) � n+ (urote ; vrote) � nZ + (Nx; Ny) � nZ

�
(6)

where (Nx; Ny) is a noise term representing the error in the estimate of optical flow. In
the forthcoming analysis we emphasize the geometric aspect of the problem and do not
attempt to model the statistics of the noise. We will therefore ignore the noise term.

From (6) we can see that Ẑ is obtained fromZ through multiplication by a factor given
by the terms inside the bracket, which we denote by D and call the iso-distortion factor.
The expression for D contains the term n whose value depends on the scheme we use
to recover depth. In the forthcoming analysis, we will take this “epipolar reconstruction”
approach [2], i.e. n is along the estimated epipolar direction with n =

(x�x̂0;y�ŷ0)p
(x�x̂0)2+(y�ŷ0)2

.

3 Distortion under lateral motion

We consider an agent performing a lateral translational motion (U; V; 0), coupled with a
rotation (�; �; 
). It is reasonable to expect that this agent is aware that such a generic
type of motion is executed (especially for an active vision system) such that Ŵ = W = 0.
Under this assumption, the estimated epipolar direction would be a fixed direction for all

the feature points with n =
(Û;V̂ )p
Û2+V̂ 2

. If the rotation around the optical axis is always not

executed (which is usually true for a general visual system) so that the agent sets 
̂ = 0,
we can further assume 
̂ = 
 = 0. From (6) the distortion factor can be expressed as:

D =

0
@
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1
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from which the mapping from the point (X;Y; Z) to
�
X̂; Ŷ ; Ẑ

�
can be established. Al-

gebraically, it was shown from [2] that the distortion transformation from the physical to
the reconstructed space is of degree two under lateral motion. Thus, a surface of degree
n would in general be mapped to one with degree 2n. We will concentrate on the second
order shape properties of the recovered surface patch.

Consider a surface s(X;Y; Z(X;Y )), parameterized1 by X and Y , transformed un-
der the mapping to the perceived surface ŝ(X̂; Ŷ ; Ẑ(X;Y )). By using Equation (7), the
perceived surface can be parameterized by X and Y as follows:

ŝ(X;Y ) = (DX;DY;DZ) (8)

where D is defined in (7) and for brevity, Z(X;Y ) has been written as Z. Mathematica 2

is used to investigate the distortion of the local shape in the following section.
1Such parametric representation may not be possible for more complex global shapes.
2Mathematica is a software which can be used for analyzing and visualizing differential geometry problems.
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3.1 Curvatures

Given this parametric representation of the distorted surface, we can obtain the principal
curvatures and principal directions of any point on the distorted surface patch [4]. The
expressions of the distorted curvatures under the general case (i.e. any point on the surface
patch and any epipolar direction) are very complex. Due to space constraint, we focus on
the special case of n = (1; 0) and (X = Y = 0), unless otherwise indicated. This case is
most relevant to a situated agent, which often executes horizontal lateral motion to judge
distance. In such case, it is reasonable to assume that V̂ = 0 although the true V is not
necessarily zero due to perturbances. In other words, the estimated epipolar direction can
be regarded as along the X�axis direction. Furthermore, it is reasonable to believe that
the local shape distortion at the fixation point (i.e. (X = Y = 0) ) would influence
strongly the viewer’s perception of the surface in the surrounding region, which can be
observed in the simulations and experiments presented later in this paper. For the local
surface patch given by Equation (2), we obtain the perceived principal curvatures ^kmin

and ^kmax as follows:

^kmin =
1

2

 
(kmin + kmax)U � 2�e
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�
r

Q

Û2

!

^kmax =
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2

 
(kmin + kmax)U � 2�e

Û
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r
Q

Û2

!
(9)

whereQ = U 2(kmin�kmax)
2+4(�2

e
+�2

e
)�4U(kmin�kmax)(�e cos 2�+�e sin 2�).

Notice that the parameter d which indicates the distance between the surface patch and
the observer does not affect the distorted principal curvature (and other shape measures
based on principal curvatures).

From (9), it is obvious that Gaussian and mean curvatures are not preserved under the
distortion; even the signs of principal curvatures are not necessarily preserved. The prin-
cipal directions of the perceived surface patch can be obtained by computing the eigenvec-
tors of the Weingarten matrix [4] of the parametrical shape representation. It was found
that generally the principal directions are not preserved. Only when the principal direc-
tions are aligned with the X� and the Y�axis and �e = 0, they are preserved, though
the directions of the maximum curvature and that of the minimum curvature may swap.

We are also interested in the distortion in normal curvatures, especially the normal
curvatures along the horizontal and vertical directions which are denoted as ZXX and
ZY Y respectively and given by:

ZXX = kmin cos2 � + kmax sin
2 �

ZY Y = kmin sin2 � + kmax cos
2 � (10)

The distorted normal curvatures along the horizontal and vertical directions can be
obtained as:

Ẑ
X̂X̂

=
U

Û
ZXX �

2�e

Û

Ẑ
Ŷ Ŷ

=
U

Û
ZY Y (11)

Interestingly, Ẑ
X̂X̂

and Ẑ
Ŷ Ŷ

are not affected by �e. Equation (11) shows that normal
curvatures along different directions have different distortion properties.
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3.2 Shape index

From the expression of the distorted principal curvatures, the distorted shape index at the
fixation point can readily be obtained by substituting (9) into (3):

Ŝ =
2

�
arctan

0
@ (kmin + kmax)U � 2�e

Û

q
Q

Û2

1
A (12)

whereQ = U 2(kmin�kmax)
2+4(�2

e
+�2

e
)�4U(kmin�kmax)(�e cos 2�+�e sin 2�).

(a) (b) (c) (d)

Figure 1: Distortion of shape index with different principal directions. � = 0 for (a),
� = �

4
for (b) and � = �

2
for (c). (d) was obtained by averaging curves with � = 0+n� �

8

where n = 0; 1; � � � 8. All the other parameters are identical: �e = 0:005, �e = �0:02,
U = 0:2 and Û = 0:18.

As the expression for Ŝ is very complex, we have assorted some diagrams to graphi-
cally illustrate the error in the shape index estimate with respect to the true shape index.
The curvedness is fixed for each diagram so as to factor out the influence of curvedness.
Figure 1 shows the distortion obtained by varying principal directions while fixing all
the other parameters. Figures 1(a), (b) and (c) show the sensitivity of shape recovery to
the motion estimation errors for three principal directions: � = 0, � = �

4
and � = �

2
.

Figure 1(d) show the average sensitivity for different principal directions. Note that the
sudden jump of Se in some of the curves corresponds to the case where the direction of
the maximum curvature and that of the minimum curvature have swapped. It can also
be seen that the principal direction does affect the robustness of the shapes perception.
We can also infer from Figure 1 that different shapes have different distortion properties.
The average curve shown in Figure 1(d) gives us a rough idea on the overall robustness
of the perception of different shapes: the saddle-like shapes (also known as “hyperbolic
shapes” with kmin and kmax having different sign) are more sensitive to the errors in
3-D motion estimation than the concave and convex shapes (“elliptic shapes” or “umbilic
shapes” with kmin and kmax having same sign).

4 Distortion under forward motion

We assume pure forward translation is performed, and the agent executing such motion is
aware that such generic type of motion is being executed. We thus have Û = U = V̂ =

V = 0. We also assume 
̂ = 
 = 0 as we did before. Adopting “epipolar reconstruction”
approach, the distortion factor can be expressed as:

D =
X2 + Y 2

X2 + Y 2 + �eZ(X2Y + Y Z2 + Y 3)� �eZ(XY 2 +XZ2 +X3)
(13)
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Following the same procedure of deriving the distorted curvatures as in the lateral mo-
tion case, we can obtain the distorted principal and normal curvature expressions on any
point of the distorted surface. The distorted shape index and curvedness can also be com-
puted thereafter. These expressions are very complex and are thus not presented here. In
particular, at the fixation point, the distorted local shape measurements are undefined due
to the undefined distortion factor (see Equation (13)). Our analysis in [3] shows that the
distortion factor varies wildly around the fixation point, which implies that the distorted
surface patches are also not smooth. Therefore, the distorted local shape measurements at
any particular point do not make much sense.

(a) (b) (c)

(d) (e) (f)

Figure 2: Distortion of cylinders under lateral and forward motion. (a) and (d) are the
original vertical and horizontal cylinders respectively. (b) and (e) are the distorted vertical
and horizontal cylinders under lateral motion respectively, with U = 0:9, Û = 1:0,
V = 0:5 and V̂ = 0. (c) and (f) are the distorted vertical and horizontal cylinders
under forward motion respectively. The errors in the estimated rotation are: � e = 0 and
�e = 0:05 for (b) and (e), and �e = 0 and �e = 0:001 for (c) and (f). The field of view is
127o for all the diagrams.

To have an idea on how curved surface patches will be distorted under different
generic motions, we use some graphical illustrations. We consider a vertical cylinder
and a horizontal cylinder, expressed as Z = 1

2
X2 + 4 and Z = 1

2
Y 2 + 4 respectively.

Figure 2 shows the original and recovered surfaces under lateral and forward motions.
For the lateral motion case, recall that we have only given the expressions of the esti-
mated curvatures at the fixation point (equations (9) and (11)). Given the parameters in
Figure 2, we know that at the fixation point a vertical cylinder will be perceived as a less
curved vertical cylinder and a horizontal cylinder will be perceived as a saddle-like shape.
The principal directions will not be changed. Figures 2(b) and (e) show that the distorted
surface patches are smooth and the distortion behavior at the fixation point seems to be
quite representative of the global shape distortion even with a large view angle. The recov-
ered surface patches under forward motion, by contrary, are not smooth and show large
distortion. Even when the errors in the rotation estimates are much smaller than those in
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the case of lateral motion, the perceived surface patches are obviously not quadrics with
major distortion occurring around the central region of attention.

5 Experiments

We conducted experiments based on the SOFA image sequences 3. SOFA is a package of
9 synthetic sequences designed for testing research works in motion analysis. It includes
full ground truth on the motion and camera parameters. Sequence 1 and 5 (henceforth
abbreviated as SOFA1 and SOFA5) were chosen for our experiments, the former depicting
a lateral motion and the latter a forward motion. Both of them have an image dimension
of 256�256 pixels, a focal length of 309 pixels and a field of view of approximately 45 o.
The focal length and principal point of the camera were fixed for the whole sequence.
Optical flow was obtained using Lucas and Kanade’s method [7], with a temporal window
of 15 frames. Depth was recovered for frame 9. We assumed all the intrinsic parameters
of the camera were estimated accurately throughout the experiments and concentrated on
the impact of errors in the extrinsic parameters.

The 3-D scene for SOFA1 consisted of a cube resting on a cylinder (Figure 3(a)). It
is observed that all the feature points on the top face of the cylinder in SOFA1 (which are
delineated in Figure 3(a)) lie on a plane. The reconstructed shape of this plane was used
to testify our theoretical predictions in the lateral motion case. The camera trajectory for
SOFA1 was a circular route on a plane perpendicular to the world Y -axis, with constant
translational parameter (U; V;W ) = (0:8137; 0:5812; 0) and constant rotational param-
eters (�; �; 
) = (�0:0203; 0:0284; 0). If the observer or the system was aware that a
lateral motion is being executed, then Ŵ = 0, and the following equation can be used to
recover depth:

Ẑ =
�f(Û ; V̂ ) � n

(u; v) � n� ( ^urot; ^vrot) � n

The erroneous translation estimates were fixed along the horizontal direction, which means
that n would be fixed as (1; 0). The resultant depth recovery when errors in the 3-D mo-
tion estimates assumed different values were illustrated in Figure 3 using 3-D plot viewed
from the side. In particular, Figure 3(b) shows that the plane (top of the cylinder) re-
mained as a plane, although the noise in the optical flow estimates made some points ‘run
away’ from the plane. Figure 3(c) demonstrates the shape recovered when � e > 0 and
Û < 0. According to Equation (11), we have Ẑ

X̂X̂
> 0. It can be seen from Figure

3(c) that the plane was reconstructed as a convex surface. As expected, when � e < 0 and
Û < 0, concave surfaces were perceived (Figure 3(d), (e) and (f)). Comparing Figure
3(d) with Figure 3(e) shows that larger Û resulted in smaller curvature distortion, while
comparing Figure 3(d) with Figure 3(f) shows that large � e resulted in larger curvature
distortion. Figure 3(c)–(f) show that the reconstructed surfaces were not curved in the Y
direction. All these results can be explained using Equation (11).

The SOFA5 sequence was used to perform experiments to verify predictions in the
case of forward motion. The 3-D scene for SOFA5 comprised of a pile of 4 cylinders
stacking upon each other and in front of a frontal-parallel background (Figure 4(a)). The
camera trajectory for SOFA5 was parallel to the worldZ-axis and the corresponding trans-
lational and rotational parameters were (U; V;W ) = (0; 0; 1) and (�; �; 
) = (0; 0; 0)

3courtesy of the Computer Vision Group, Heriot-Watt University (http://www.cee.hw.ac.uk/�mtc/sofa)
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(a) (b) (c)

(d) (e) (f)

Figure 3: Lateral motion sequence and depth recovery. (a)SOFA1 frame 9 with the
top face of the cylinder delineated; (b) Reconstruction with true motion parameters.
(c) Reconstruction with (U; V = (�1; 0) and (�̂; �̂; 
̂) = (�0:03; 0:01; 0). (d) Re-
construction with (U; V = (�1; 0) and (�̂; �̂; 
̂) = (�0:01; 0:04; 0). (e) Reconstruc-
tion with (U; V = (�2; 0) and (�̂; �̂; 
̂) = (�0:01; 0:04; 0). (f) Reconstruction with
(U; V = (�1; 0) and (�̂; �̂; 
̂) = (�0:01; 0:06; 0).

respectively. We assumed that the observer or the system has been aware that a forward
motion is being executed, i.e. Û = V̂ = 0. Performing epipolar reconstruction, the
equation for calculating depth for each feature point would be:

Ẑ =
x2 + y2

(u; v) � (x; y)� ( ^urot; ^vrot) � (x; y)

Figure 4(b) depicts the case of no errors in the motion parameters. It can be seen that
the background plane was preserved roughly. However, when there was small amount of
errors in the rotation estimates, a complicated curved surfaced with significant distortion
was reconstructed (shown in Figure 4(c)). It is in accordance with our prediction that
large depth distortion is expected when forward motion is performed.

6 Conclusions

This paper presented an investigation on the reliability of shape recovery from motion
cue. Distortion of the local shape recovery was considered under different generic mo-
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(a) (b) (c)

Figure 4: Forward motion sequence and depth recovery. (a) SOFA5 frame 9. (b)
Reconstruction with true motion parameters. (c) Reconstruction with (�̂; �̂; 
̂) =

(�0:001;�0:001; 0).

tions. Specifically, our distortion model has shown that the types of motions executed
are critical for the accuracy of the shape recovered. In the case of lateral motion, the
accuracy of curvature estimates exhibits an anisotropy with respect to the estimated trans-
lation direction, in that the surface curvature in the estimated translational direction is
better perceived than that in the orthogonal direction. Correlatively, the recognition of
different shapes (classified in terms of shape index) exhibits different degrees of sensi-
tivity to noise. In the case of forward motion, the reconstructed shape experiences larger
distortion compared with the case of lateral motion and is not visually smooth any more.
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