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Abstract 
 

In this paper, a new deformable contour method derived from a constrained contour 
energy minimization framework is presented. By imposing a constraint of region, which 
can be any function characterizing features of the contour interior structures (including 
homogeneity, texture, and color, etc.), to boundary-based contour energy minimization, 
the method can incorporate a very general class of modeling information from both 
boundary and interior region. More favourable results comparing to the conventional 
deformable contour methods are demonstrated. 
 
 

1  Introduction 
 
Image segmentation is a fundamental issue in computer vision. As one of the most 
successful image segmentation techniques, deformable contour methods have received a 
tremendous amount of attention in a variety of areas, including robot vision, pattern 
recognition, and biomedical image processing. Typically, deformable contour methods 
model image segmentation as a contour energy minimization problem, which is 
dependent only on image gradient (boundary-based). In searching for the contour 
energy minimum, many approaches have been proposed [8]. A traditional difficulty with 
these approaches is that, due to the presence of other objects in an image and noise, 
there are numerous energy minima. Consequently, undesired contour energy minima, 
instead of target boundary, are often generated. As a solution, “balloon force” concept 
was brought up in [5], which tries to push the contour nearby the target boundary in 
order to locate it. This concept is extensively applied in later literatures [2], [14], [11]. But 
as “balloon” forces are functions of image gradient or constants, it can be still difficult 
for the balloon force to distinguish the neighborhood of target boundary from those of 
undesired contour energy minima, when image gradient information is either noisy or 
inaccurate in identifying target boundary. As an alternate solution to the problem of 
multiple contour energy minima, non-deterministic approaches [9], [6] search for a global 
contour energy minimum. The problem with these methods is that, in a complex image 
context, the target boundary is usually a local energy minimum. To make the target 
boundary be the global energy minimum, two conditions are often needed. Either a major 
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modification of energy function, incorporating specific prior knowledge on target 
boundary [9], or a preset mask [6] constraining the contour searching space within a 
neighborhood close to target boundary is required. Region-based deformable contour 
method is one way to avoid the problem of boundary-based methods, by considering 
boundary extraction as minimizing region-based energy functions [4], [12]. That means 
some prior knowledge of the region and image structure, such as the number and mean 
brightness of the objects in the image, is often required. Such information is not readily 
available in many implementations. Another problem is that these methods are only 
based on region features and may obtain inaccurate contours due to lack of image 
gradient information. 

In this work, we focus on integrating region and boundary information into one 
framework. Specifically, our strategy is to add the region information to the existing 
boundary-based deformable contour formulation. Since region information is more global 
and less susceptible to noise, it will make the approach more robust and precise. We 
note here that in the literature of deformable contour methods, there have been work [15], 
[16] addressing this issue, and similar ideas have been proposed in other image 
segmentation methods as well, although with rather different natures [3], [7]. In [3], a 
model based boundary finder that integrates region and boundary information is 
presented. The method is robust to noise but has difficulty in handling complex shape 
and poor initialization. In [7], an original framework incorporating information from both 
region and boundary is proposed. However, this method still requires that the functions 
incorporating region information, or the integral of the region characterization function 
over the region, be expressed by an integral over its boundary.   

This work takes the viewpoint that region information can be introduced as extra 
constraints within the contour energy minimization framework. With this in mind, the 
contour energy minimization problem is then formulated as searching for an energy 
minimum contour with its interior satisfying a constraint of region features. The 
constraint can be any function characterizing the contour interior structure, such as 
homogeneity, texture, and colour. The introduction of the constraint is to limit the 
contour searching in a subspace of contours with desirable interior properties, whereby 
undesirable local energy minima are eliminated and target boundaries are much easier to 
be located. To solve this constrained contour energy minimization problem, a new 
method derived from evolution strategy is developed. The method incorporates not only 
boundary features (by minimizing contour energy) but also a general class of modelling 
information from contour interior region (by imposing the constraint). As a special case, 
a constraint function based on region homogeneity inside the contour is proposed. The 
versatility and robustness of the method with this constraint is then evaluated by using 
challenging biomedical image applications where extracting contours with gaps, complex 
shapes, and interior noises are common requirements. High computational complexity 
due to energy minimization by evolution strategy is avoided by limiting the contour 
searching space within a small set of contour individuals. In many cases, the results 
outperform by far the conventional deformable contour methods.  

The derivation of the proposed method and the algorithm description are introduced 
in Section 2 and Section 3, respectively. A brief comparison of the performance of the 
method with those of others is illustrated in Section 4. Finally, conclusions are contained 
in Section 5. 

 

2 The Derivation of New Method 
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We formulate the problem as follows. We first start with boundary model. 
Let Φ  be an open domain subset of 2ℜ  and ℜ→Φ:),( yxI  be the image intensity 

function. Assume that target boundary Φ⊂Γ )(s  is a closed contour with minimum 
energy,  

                                    EsE Min))(( =Γ     (1) 

where s is the parameter of )(sΓ  and (.)E  is an energy function, 
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where p = 1 or 2, IG *∇  is the absolute value of the gradient of I(x, y) smoothed by a 

Gaussian filter N(0, σ1
2). It should be noted that (.)E  taking the form of Eq. (2) is not 

strictly necessary and can be replaced by energy functions such as of [8], [2].  
Let region 

)(sΓΩ  be the interior of )(sΓ . To characterize this region 
)(sΓΩ , we assume 

that there exists a characteristic function D(x, y) satisfying the following condition, 
                           )(),( if                  0),( sV yxTyxD ΓΩ∈≥−   (3) 

where 
VT  is a given constant. D(x, y) can be any arbitrary function of region features 

including colour and texture. From Eq. (3), a very general class of the modelling 
information from region can be incorporated into the contour energy minimization 
framework.  

Considering all the difficulties associated with the various natures that exist in image 
segmentation problems, defining a general D(x, y) that can be universally applied is a 
challenging task. In this paper, we bring up a D(x, y) function that is based on the region 
homogeneity properties.  
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where I0 is the average intensity over region )( sΓΩ . ),( yxA  represents a measurement 

of smoothness as a function of point gradient, and ),( yxB is a measurement of 

smoothness as a potential function of deviation from an average brightness value I0 of 
the interior region. Therefore, D(x, y) as given in (4) can be considered as a homogeneity 
measure of smoothness at an interior point (x, y). A large value of the gradient and a large 
deviation of the point brightness from I0 produce a much smaller value of D(x, y).  

We are now ready to give the problem statement. Ou r problem is to find a closed 
contour C(s, t) enclosing region Ωc, such that 
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is minimized with the constraint  
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for all (x, y)∈ Ωc. 
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Our solution to the constrained optimization problem is to use evolution strategy to 
deform C(s, t) until an optimum is reached. The evolution strategy is to mimic the process 
of evolution, the deriving process for emergence of complex and well-adapted organic 
structure [1]. It is a recursive process in which a population of individuals, the parents, 
mutates and recombines to generate a large population of offspring. These offspring are 
then evaluated according to a fitness function and as a result, a best subset of offspring 
is selected to replace the existing parents. There are three main factors to consider: 
1. The representation of individual contours – Individual contours are represented by 
states.  
2. Variations of states – There are two types of state variation scheme: mutation and 
recombination. We consider the mutation as C(s, t) varies by satisfying the constraint of 
Eq. (6), and mutates [1] by adding a Gaussian σ0N(0,1) perturbation. The recombination 
of contours requires a much higher computational complexity and is not being currently 
used in our application. 

Let ∫∫
Ω

−=
C

dxdyTyxDtsCF V )),(()),(( . When the initial region interior of C(s, 0) 

satisfies constraint Eq. (6), it can be proven that if 0,0 ≥≥
∂
∂ t

t
F  , then  the interior of 

C(s, t) satisfies Eq. (6). To make 0,0 ≥≥
∂
∂ t

t
F , with the analysis shown in the Appendix, 

the corresponding curve evolution fo rmula is,  
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The contour driven by Eq. (7) grows outward when VTyxD >),( , and stops at points 

when D(x, y) =
VT . By incorporating the mutation process, we have 

                [ ]NNtsTtsytsxD
t

tsC
V

r
)1,0(),()),(),,((

),(
0σ−−=

∂
∂ . 

Let ),(),(0 yxDts τσ =  with 10 ≤≤τ , 

                 [ ]NTNyxD
t

tsC
V

r
−−=

∂
∂

))1,0(1)(,(
),(

τ  

To reduce the point brightness noise contamination, in Eq. (6), I(x, y) is replaced with 
a local average of size 3 by 3 denoted as M(x, y). To further improve the efficiency of the 
mutation process is to let τ be a function depending on the local image brightness 
distribution as  
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The goal is to generate a velocity perturbation only when needed. For a small Z1 
indicating a rather smooth neighborhood, Eq. (8) produces a small τ to cause a small 
perturbation. For a large Z1 indicating a rough neighborhood, also causes a small 
perturbation. Only when Z1 is between these two extremes, the random perturbation is 
assigned a large value. Then we have 
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3. Selection scheme -- We apply a modified ),( λµ  selection scheme [1], where 
2
N

=µ  

and N=λ . The notation ),( λµ  indicates µ  parents create µλ >  offspring by means 

of mutation, and the best µ  offspring individuals are deterministically selected to 
replace the parents. However, the acceptance of temporary deterioration might also make 

),( λµ  selection drift away from the contour energy minimum. To avoid this, we select 

the state with the lowest energy from µ  survivors in ),( λµ  selection and compare it to 

the state of lowest energy selected from the previous selections. We save the state with 
lowest energy among all the selection processes as the output contour when the 
algorithm is over. 

The described evolutionary method involves a contour evolution [10] formulation 
that maximizes an interior F function under perturbations so that the minimum E contour 
can be evaluated among the generated admissible contour set. The algorithm terminates 
under the following two conditions: 
1. The maximum F is reached in less iterations than NT and resulting minimum E contour 
is recorded as the solution.  
2. The total number of iterations NT has been reached and the resulting minimum E 
contour is recorded as the solution.  

The resulting effect of the contour point velocity perturbation is equivalent to an 
adjustable VT . Lowering VT  to zero makes NT as the only stopping control. Therefore, 

the contour continues to expand with D(.)>0 for all image pixels and many local minimum 
E solutions are found in the process. To achieve the minimum E contour for a given 

VT  

setting, the original level set [10] is needed which requires a much longer computation 
time while approximated solutions can be obtained in much less computation times  using 
the fast marching approach [13]. An approximated solution is reached when the maximum 
contour point velocity (the maximum F is considered reached) is less than a preset 
velocity. A smaller VT  value produces a larger interior area that requires a larger iteration 

number in order to reach a boundary contour.  
 

3 Algorithm Descriptions 
 
As in many applications 0I  in Eq. (9) is not known, the method estimates 0I  using the region 

information of contour interior. Naturally, 
0I  is estimated by ),(

0
ˆ tqCI , the average intensity inside 

contour C(q,t). Then the derived deformable contour algorithm is, 
1. Input the Gaussian filtered image I(x, y), initial interior location (x0, y0), and parameters: 
σ (spreadness in D(x, y)), VTH (stopping velocity threshold), NC (number of candidate 
contours), NT (total number of iterations) and VT . 

2. Generate a contour around the 5 by 5 region centered at (x0, y0); duplicate another (Nc-
1) copies; Fix )0,(

00
qCII

)
= , where )0,(

0
ˆ qCI  is the average intensity inside the initial 

contour C(q,0) and set the number of iterations to zero. 
3. For each contour from the NC contours performs the following: 
i). Solve Eq. (9) using fast marching or level set method for 10 iteration 
ii). Let ),(

00
ˆ tqCII =  and fix it, where ),(

0
ˆ tqCI  is the average intensity inside the current 

contour C(q, t). Stop the whole process and record the minimum E contour as the 
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solution, when the maximum point velocity is less than VTH, otherwise continue;  
4. Compute E of Eq. (5) and select NC/2 contours of the smallest E from the NC contours; 
record the minimum E contour as a potential solution and its corresponding iteration 
number. 
5. Duplicate each contour of the selected NC/2 contours once to constitute a set of new 
NC contours; Stop the whole process when the number of iterations is larger than NT, 
otherwise, go to Steps 3.  
The recorded minimum E contour is the solution contour. 
 

4 Results and Comparison 
 
Due to lack of space, in this paper, we can’t present an extensive comparison of the 
method with the existing conventional deformable contour methods. We only show a 
simple comparison with four other methods to provide an indication of the efficiency of 
our approach.  The first two methods are geodesic snakes [2], and area & length active 

contours [14] using 
2

*1

1
),(

IG
yxg

∇+
=  as the edge detection function. The third 

method is T-snake [11] and the fourth is GVF snake [17] with less than one hundred 
iterations to estimate its diffusion factors. The test image set contains two selected 
biomedical images and is shown in Fig. 4.1a and Fig. 4.2a with several initial contour 
locations added to each ima ge. The initial positions are marked with either white dots on 
a dark background or dark dots on a light background. Fig. 4.2a is CT image of the 
stomach with additive noise of Gaussian noise (variance 3000). To conduct an objective 
evaluation, the variance of Gaussian filter of all the methods is set as the same value 

11 =σ . In this evaluation, our task is to extract sulci contour in Fig. 4.1a and left kidney 

in Fig. 4.2a.  
As shown in the following figures, the segmentation results using the proposed 

method has an obvious advantage over the conventional deformable contour methods1.  
The method has also been successfully applied in medical image data including 

visual blood cell images (Fig. 4.3). More results and detailed parameter settings can be 
found in [19]. 

 

5 Conclusions 
 
We have introduced a framework of deformable contour methods based on constrained 
optimization. The framework can conveniently incorporate region features such as color, 
and texture. By limiting the contour searching space to a subset of contours with 
desirable interior features, the algorithm derived from the proposed framework is more 
robust to noises and in many cases, performs better than conventional deformable 

contour methods. In this paper, we have only used σ
0),(

2
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1 According to the evaluation by Professor Michael Behbehani of Molecular & Cell 
Physiology Dept. of University of Cincinnati, Dr. Nie and his colleagues in University of 
Kentucky hospital. 
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access the variation of contour interiors. This, however, does not constitute a limitation 
to the proposed method. In fact, our method can be easily extended to handle other 
measures of interior features, such as the similarity of color and texture [18]. It is also 
rather straightforward to incorporate shape information into ),( yxD  function. All these 

present a very desirable feature in many segmentation applications where the 
information from multiple sources is needed in a simple framework.  

As for the computational complexity, it usually takes 30 seconds to 5 minutes for our 
algorithm to obtain most of the segmentation results in the ultra 10 Sun workstations. So 
the computational complexity is rather comparable to other deformable contour methods.  
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Fig. 4.1f Constrained optimization approach 
 

Fig. 4.1e  GVF snake 

Fig. 4.1c Geodesic snake 

Fig. 4.1b Topology snake 

Fig. 4.1d  Area & Length active contour 

Fig. 4.1a Brain image 
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Fig. 4.2a Original image Fig. 4.2b Topology snake 

Fig. 4.2c Geodesic snake Fig. 4.2d Area & length active contour 

Fig. 4.2e GVF snake  Fig. 4.2f Constrained Optimization 

  
Fig. 4.3b Segmentation result of Fig. 4.3a 

 
Fig. 4.3a Original cell image one 

 

191



 

 

Appendix I 
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In a curve evolution formula, equation 5) can be written as, 
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