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Abstract

Although the fundamental ideas underlying research efforts in the field of
computer vision have not radically changed in the past two decades, there
has been a transformation in the way work in this field is conducted. This is
primarily due to the emergence of a number of tools, of both a practical and
a theoretical nature. One such tool, celebrated throughout the nineties, is the
geometry of visual space-time. It is known under a variety of headings, such
as multiple view geometry, structure from motion, and model building. It is
a mathematical theory relating multiple views (images) of a scene taken at
different viewpoints to three-dimensional models of the (possibly dynamic)
scene. This mathematical theory gave rise to algorithms that take as input im-
ages (or video) and provide as output a model of the scene. Such algorithms
are one of the biggest successes of the field and they have many applications
in other disciplines, such as graphics (image-based rendering, motion cap-
ture) and robotics (navigation). One of the difficulties, however, is that the
current tools cannot yet be fully automated, and they do not provide very ac-
curate results. More research is required for automation and high precision.
During the past few years we have investigated a number of basic questions
underlying the structure from motion problem. Our investigations resulted in
a small number of principles that characterize the problem. These principles,
which give rise to automatic procedures and point to new avenues for study-
ing the next level of the structure from motion problem, are the subject of
this paper.

1 Introduction: The problem

We are given a number of images of a scene taken at different viewpoints and the goal is
to create 3D models of the scene in view. What is a geometric model of image formation?
To make an image, we first pick a point in space and consider all the light rays passing
through this point. Then we cut these rays with a surface. For the standard pinhole camera,
this surface is a plane and images are formed by central projection on a plane (Fig. 1a).
The focal length is f and the coordinate system O XY Z is attached to the camera, with Z
being the optical axis, perpendicular to the image plane. Image points are represented
as vectors r = [z,y, f]*, where x and y are the image coordinates of the point in the
coordinate system oxy, with oz||OX, oy||OY and o the intersection of the axis OZ with
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the image plane, and f is the focal length in pixels. A scene point R is projected onto the
image point
R
IR

where Z is the unit vector in the direction of the Z axis.

ey

(b)

Figure 1: Image formation on the plane (a) and on the sphere (b). The system moves
with a rigid motion with translational velocity t and rotational velocity w. Scene points
R project onto image points r and the 3D velocity R of a scene point is observed in the
image as image velocity r.

If we cut the rays with a sphere, we obtain a spherical eye with a full field of view
(Fig. 1b). In the case of video, the camera is moved to different locations while acquiring
new images. Thus, video acquired by a moving camera amounts to a collection of images
of a scene, i.e., projections onto an imaging surface, acquired from different viewpoints.
Figuring out a model for the scene and the movement in the scene becomes a problem of
relating the different projections (images) to each other.

In general, when a scene is viewed from two positions, there are two concepts of
interest:

(a) The 3D transformation relating the two viewpoints. This is a rigid motion transfor-
mation, consisting of a translation and a rotation (six degrees of freedom). When
the viewpoints are close together, this transformation is modeled by the 3D motion
of the eye (or camera).

(b) The 2D transformation relating the pixels in the two images, i.e., a transformation
that given a point in the first image maps it onto its corresponding one in the sec-
ond image (that is, these two points are the projections of the same scene point).
When the viewpoints are close together, this transformation amounts to a vector
field denoting the velocity of each pixel, called an image motion field.

Perfect knowledge of both transformations described above leads to perfect knowledge
of models of space and action. Regarding models of space, this is easy to understand.
Knowing exactly how the two viewpoints and the images are related provides the exact
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position of each scene point in space. Regarding models of action, knowing the exact
velocity of each image point, by projecting it back onto the scene, for which a model is
available by the previous step, we can find the 3D motion vector for each scene point
at every time instant. The sequence of evolving 3D motion fields constitutes a general
model of action (since action is the extension of shape into time). Let us make these
ideas more explicit. In the case where the viewpoints are close to each other, the 3D
transformation becomes the camera’s 3D motion, and the 2D transformation becomes an
image motion field. Considering a camera with the geometric model of Fig. 1a moving
in a static environment with instantaneous translation t = (U, V, W) and instantaneous
rotation w = (q, 3,7) (measured in the coordinate system OXY Z), a scene point R
moves with velocity (relative to the camera)

R=-t—-wxR )

The image motion field then consists of the sum of two vector fields, one due to the
translational part of the 3D motion and the other due to the rotation. Equation (1) and (2)
give [23]:

1
(R-2)

r=—

(ix(txr))—i—%ix(rx (wxr)):%u”(t)—i—umt(w) 3)
where Z is used to denote the scene depth (R - 2), and uy,, u,ot the direction of the
translational flow and the rotational flow respectively. Due to the scaling ambiguity, only
the direction of translation (focus of expansion—FOE, or focus of contraction—FOC,
depending on whether the observer approaches or moves away from the scene), and the
three rotational parameters can be estimated from monocular image sequences [6].

Equation (3) demonstrates model construction. If the image motion vector 1 is known
at point r, then knowledge of t (up to scale) and w provides Z (up to scale), i.e., the depth
at point r in the camera’s coordinate system. Knowledge of Z (or, equivalently, R) for
all image points r provides a model for the scene in view, for the current viewpoint of the
camera. Knowledge of t,w and R provides then, from eq. (2), knowledge of R (up to
scale), that is, the 3D motion vector. A sequence of 3D motion vector fields is a model of
action, as it shows how different parts of space move.

Thus, a key to the basic problem of building models of space-time is the recovery of
the two transformations described before and any difficulty in building such models can
be traced to the difficulty of estimating these two transformations. Of course, there exist
many issues to be addressed before models can be built, but recovery of the camera’s
3D motion and the image motion field are the essential prerequisites for acquiring scene
depth, which is the cornerstone of the model building process.

Naturally, the community addressed the problem in the form of three modules having
a hierarchical structure. The first module worries about finding the 2D transformation
relating the pixels in the different images; it deals with the correspondence problem. The
second module worries about recovering the 3D transformation relating different view-
points. And the third module uses the first two to recover the depth of the scene and
subsequently surfaces and models. Our work demonstrates that these modules do not
work independently of each other but they are rather components of an intricate feedback
loop. Nevertheless, in order to put our contributions into the context of current work, we
choose to describe them in relation to these modules.
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1.1 What the paper is about

In this paper we show that there exist inherent difficulties in both the estimation of the
2D and 3D transformation, if addressed using the classic bottom-up strategy. It has been
known that discontinuities in depth and motion are a problem for the estimation of image
motion or correspondence. There is another problem however, which is of a statistical
nature. The estimation of image features is biased and thus there is an ambiguity in the
computation of image motion as well as the correspondence of points and lines. Section
2 discusses this principle. It turns out that this same principle is a cause of a large number
of geometric optical illusions. Thus, we choose to explain this inherent uncertainty by
employing a few examples of well-known (unexplained until now) optical illusions.

The inherent limitations in the estimation of correspondence suggest that the esti-
mation of 3D motion should use as input the movement perpendicular to image edges,
which, in contrast, constitutes a well-defined quantity. Section 3.1 describes constraints
relating this movement directly to 3D motion and structure. Section 3.2 discusses a gen-
eral problem in the estimation of 3D motion from image measurements. For conventional
cameras with restricted field of view there is an ambiguity in the estimation of the pa-
rameters describing the rigid transformation; translation is confused with rotation. This
confusion does not exist for cameras with a full 360-degree field of view (Section 3.2.1).
This has motivated our efforts to design new imaging mechanisms (sphere-like cameras)
with which it is possible to obtain 3D motion very accurately (Section 3.3).

Section 4 discusses issues related to the estimation of structure. Erroneous 3D motion
estimates lead to a distorted structure. The consequence is that exact models of the 3D
scene cannot be obtained. These studies demonstrate that the estimates of the 2D and 3D
transformation are inherently coupled. The 2D transformation cannot be computed accu-
rately without knowledge about the structure of the scene, and 3D motion and structure
cannot be estimated well before the 2D transformation is available.

We argue that a complete solution to structure from motion requires a synergistic
approach to the estimation of the two transformations, and a plausible way to achieve
this is through feedback. First, using the movement of edges, an initial estimation of 3D
motion and structure is performed from video. Then, using these estimates, the system
recomputes both the image transformation and the 3D transformation, but now using as
input features of larger extent, not only points and lines, but image patches. Section 5
discusses an approach along this direction. It introduces new constraints which relate
textured image patches to 3D motion and structure.

2 The 2D transformation: Bias

If the viewpoints are far apart, then points and lines are extracted in the two images and
their correspondence is estimated, thus resulting in the 2D transformation [20]. If the
viewpoints are close to each other, the image motion field is an estimate of the 2D trans-
formation. In whatever way the process of matching is done, and it is not at all clear how
this process could be achieved, it has to be preceded by a step where image features such
as lines, intersections of lines, or local image movement must be derived. However, as
we will show next, noise in the image intensity and its derivatives causes problems in the
estimation of features; in particular, it causes bias. As a result, the locations of features
are estimated erroneously. The bias occurs with any visual processing of line features,
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thus creating problems in the estimation of the transformation relating the images in a
video sequence. Under average conditions the bias is not large enough to be noticeable,
but one can construct patterns where it can clearly be perceived. Incidentally, illusory pat-
terns, known as geometric optical illusions, are such that the bias is highly pronounced.
In general, this bias cannot be avoided and any vision system, biological or artificial, must
cope with it. This constitutes a general uncertainty principle governing the workings of
vision systems, and demonstrates that if we start the process of structure from motion by
localizing points and lines and matching them in the image sequence, or if we attempt to
estimate the image motion field, we will have an ambiguity.

Let us now go deeper into the nature of this uncertainty. What does bias mean? In
general, we have abailable noisy measurements and we use a procedure—which we call
the estimator—to derive from these measurements a quantity, let’s call it parameter x.
Any particular small set of measurements leads to a different value for parameter x. As-
sume we perform the estimation of x using different sets of measurements many times.
The mean of estimates x (that is, the average number of an infinite number of values) is
called the expected value of z. If the expected value is equal to the true value, the estimate
is called unbiased, otherwise it is biased. In the case of the interpretation of images a sig-
nificant amount of data is used. Features are computed from image values in extended
spatial areas acquired at different instants. The extraction of features is some form of
estimation process, for which the mean (and the bias) are inherent properties. Thus the
bias is justified in the explanation of the perception of features.

(a) Line localization The best way to explain this principle as far as line localization is
concerned, is through geometric optical illusions. Consider Figs. 2, 3 and 4. Although
in all the figures the lines are straight and parallel, they do not appear so. In 2 and 3 they
appear bulging and wiggly and in 4 they appear to be tilted. The reason is due to the
uncertainty principle mentioned above. There is noise in the image intensities and there
are many sources of noise. For example, the lenses cause blurring, there are errors due to
quantization discretization, and there are errors due to temporal integration. The effect of
all these sources of noise is equivalent to smoothing the image with a Gaussian function.
There is a mathematical framework which describes images, or signals in general, under
smoothing, which is called scale space analysis [25].

The scale space behavior of straight edges is illustrated in Fig. 5. There are three
cases to be considered: Edges between a dark and a bright region do not change location
under scale space smoothing (Fig. 5a). The two edges at the boundaries of a bright line, or
bar, in a dark region (or, equivalently, a dark line in a bright region) drift apart, assuming
the smoothing parameter is large enough that the whole bar affects the edges (Fig. 5b).
Finally, the effect of smoothing on a line of medium brightness next to a bright and a dark
region is to move the two edges towards each other (Fig. 5¢).

This suffices to explain the main cause underlying the three illusions in Figs. 2—4, and
several others [14], as shown in Figs. 6, 7 and 8.

Fig. 2 (from [1]) consists of a black square grid on a white background with small
black squares superimposed. It gives the perception of the straight grid lines being con-
cave and convex curves. The effect can easily be understood using the above observations.
The grid consists of lines (or bars), and the effect of smoothing on the bars is to drift the
two edges apart. At the locations where a square is aligned with the grid, there is only one
edge, and this edge stays in place. The net effect of smoothing is that edges of grid lines
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Figure 3: “Waves” illusory pattern.
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Figure 5: A schematic description of the

behavior of edge movement (drift) in scale
space: (a) no movement, (b) drifting apart,

(c) getting closer.
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Figure 6: (a) Small part of Fig. 3, (b) edge
detection without smoothing, (c) Gaussian
smoothing, and (d) smoothing and edge de-
tection have been applied.
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Figure 7: (a) The result of smoothing and
edge detection on a part of the figure. (b)
and (c) The drift velocity at edges in the
smoothed image logarithmically scaled for
parts of the figure.

Figure 8: (a) Small part of the figure. (b) Result of smoothing and edge detection. (c)
Modified café wall pattern, (d), (e), small part and edge detection.



=

BMVC

2002

are no longer straight as illustrated in (Fig. 6d) which shows the result of edge detection
on the smoothed image in comparison to Fig. 6b which shows edge detection on the raw
image. The illusion in Fig. 3 is explained in an exactly analogous manner (see Fig. 7).

The famous “café wall” illusion shown in Fig. 4 consists of a black and white checker-
board pattern with alternate rows shifted one half-cycle and with thin mortar lines mid-
way in luminance between the black and white squares separating the rows.

At the locations where a mortar line borders both a dark tile and a bright tile the two
edges move toward each other under smoothing, and for thin lines it takes a relatively
small amount of smoothing for the two edges to merge into one. Where the mortar line is
between two bright regions or where it is between two dark regions the edges move away
from each other. The results of smoothing and edge detection are illustrated in Fig. 8b for
a small part of the pattern shown in Fig. 8a. It can be seen that the edge elements which
form the boundaries of the tiles are tilted with the same sign of slope as perceived. (There
are two kinds of overlapping edge elements, the ones form the lower boundary of a white
tile and the upper boundary of a black tile, and the others form the lower boundary of a
black tile and the upper boundary of a white tile.)

If bias is indeed the main cause of the illusion then we should be able to counteract the
effect by introducing additional elements. This has been pursued in Fig. 8c; the additional
white and black squares put in the corners of the tiles remove the illusory effect. Fig.
8d shows a small part of the pattern and Fig. 8e shows the edges detected. As can be
seen from the figure, the inserted squares partly compensate for the drifting in opposite
directions of edges along the mortar line separating tiles of the same gray level. As a
result slightly wavy edgels are obtained; but the “waviness” is too weak to be perceived
(low amplitude, high frequency) and as a result a straight line without tilt is seen.

A full account of the perception of tilted lines requires additional explanation. The
illusion is due to two processing stages. In the first stage local edge elements are com-
puted and bias explains the tilting of these elements. The second stage consists of the
integration of these local elements into longer lines. Our hypothesis is that this integra-
tion is computationally an approximation of the longer lines using as input the positions
and orientations of the short line elements. Such an approximation gives rise to a line with
a tilt. It also explains other illusions, such as one of the most forceful of all illusions, the
Fraser spiral pattern, which consists of circles made of black and white elements which
together form something rather like a twisted cord, on a checkerboard background. The
twisted cord gives the perception of being spiral shaped, rather than like circles. The indi-
vidual black and white elements which make up the cord are sections of spirals, thus also
the edges at the borders of the black and white lines are along theses directions and the
approximation process will fit spirals to them.

(b) Point localization Similarly, there is bias in the intersection of lines, i.e., points.
Let us analyze the estimated position of an intersection of straight lines. Assuming the
image to be I(z,y), the inputs are edge elements, parameterized by the image gradient (a
vector in the direction normal to the edge) (I, I,) and the position of the center of the
edge element xo = (g, Yo)-

Consider additive, independently identically distributed (i.i.d.) zero-mean noise in the
parameters. In the sequel unprimed letters are used to denote estimates, primed letters
to denote actual values, and §’s to denote errors, where I, = I}, + 01, I, = Iz,/ + 461,
xo = xf) + 0o and yo = yg + dyo-
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For every point (z,y) on the lines the following equation holds:

Lo+ Ly = Lx + Iy 4)

Equation (4) is the equation of the straight line on which an edgel with center (z {,, y;) and
gradient (I, I, ) lies. This equation is approximated by the measurements. Let n be the
number of measurements. Each measurement i provides one equation

Iwix+1iy:I$ix0i +Iiy0i (%)
and we obtain a system of equations which are represented in matrix form as
I,x=C

Here I, is the n-by-2 matrix which incorporates the data in the I, and I,,, and C is
the n-dimensional vector with components I, zo, + Iy,yo;. The vector x denotes the
intersection point whose components are x and y. The solution to the intersection point
using standard least square (LS) estimation is given by

x = (I'I,)~ It C (6)

It is well known [19] that the LS solution to a linear system of the form Ax = b with
errors in the measurement matrix A is biased. The statistics of the estimation have been
studied for the case of i.i.d. noise in the parameters of A and b. In our case b is the
product of terms in A and two other noisy terms and thus the statistics are somewhat
different.

To simplify the analysis, the variance of the noise in the spatial derivatives in the z
and y directions is assumed to be the same, let it be o2, and also the expected values of
higher- (than second) order terms are assumed to be neghglble. In [17] the expected value
of x is found by developing (6) into a second-order Taylor expansion at zero noise. It
converges in probability to

x =x +nM' " (xy — x')o? )
where N
n n
n ! 1 n !
Zi:l I -TiI Yi Z i=1 1 Yi
TL
x' is the actual intersection point and Xo = 7f Z } is the mean of the xp,. The
i=1 Yo;

second term on the righthand side of (7) represents the bias.

Using (7) allows for an interpretation of the bias. The estimated intersection point is
shifted by a term which is proportional to the product of matrix M ' ~! and the difference
vector (Xp — x’). Vector (X9 — x') extends from the actual intersection point to the
mean position of the edge elements. M '~!, which depends only on the spatial gradient
distribution, is a real symmetric matrix and thus its eigenvectors are orthogonal to each
other. The direction of the eigenvector corresponding to the larger eigenvalue of M '~!
is dominated by the normal to the major orientation of the image gradients and thus the
product of M '~ with vector (%o —x') is most strongly influenced by this orientation. For
the case of two intersecting lines in an acute angle, the intersection is between the lines,
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the size of the bias decreases as the angle increases, and there is more displacement of the
intersection point in the direction perpendicular to the line with fewer edge elements.
The best known illusions due to intersecting lines are the Poggendorff and Zollner
illusions. A version of the Poggendorff illusion as described by Zollner is displayed in
Fig. 9 (for an interactive version see [24]). The upper-left portion of the interrupted, tilted

straight line in this figure is apparently not the continuation of the lower portion on the
right, but is too high.

I

() (b)

Figure 10: (a) Zollner pattern. (b) The
bias in the intersection points of the edges

causes the line elements between intersec-
Figure 9: Poggendorff illusion. tion points to be tilted.

Figure 11: Estimation of edges in Zollner pattern. The line elements are found by con-
necting two consecutive intersection points, resulting from the intersection of edges of
two consecutive bars with the edge of the vertical bar (one in an obtuse and one in an
acute angle). The data consists of edge elements uniformly distributed on the vertical and
on the tilted line (with 1.5 times more elements on the vertical).

The phenomenon is explained by the bias in the estimation of the intersection point.
Referring to Fig. 9, the intersection point of the left vertical with the upper tilted line is
moved up and to the left, and the intersection point of the right vertical with the lower
tilted line is moved down and to the right. As a result the two line segments appear to

10
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be shifted in opposite directions and not to lie on the same line anymore. The model
also predicts the findings of many parametric studies, for example, findings regarding the
change in the size of the illusory percept with a change in the angle of the intersecting
lines and the orientation of the figure [14].

Fig. 10 shows a version of the Zollner illusion. The vertical bands in Fig. 10 are
all parallel, but they look convergent or divergent. The biases in the intersection points
of the edges of the bands with the short line segments cause the edge elements along
the long edges between intersection points to be tilted, as illustrated in Fig. 10b. In a
second computational step, long lines are computed as an approximation to the small
edge elements, and this gives rise to tilted lines or bars in the same direction as perceived
by the visual system. Fig. 11 shows the estimation of the tilted line elements for a pattern
such as in Fig. 10a with 45 degrees between the vertical and the tilted bars.

(c) Image motion The basic image representation when the viewpoints are close to each
other, is the optical flow. Optical flow is derived in a two-stage process. In a first stage
the velocity components perpendicular to linear features are computed from local image
measurements. In the computational literature this one-dimensional velocity component
is referred to as “normal flow” and the ambiguity in the velocity component parallel to
the edge is referred to as the “aperture problem.” In a second stage the optical flow is
estimated by combining, in a small region of the image, normal flow measurements from
features in different directions, but this estimate is biased, as will be shown.

We consider a gradient-based approach to derive the normal flow. The basic assump-
tion is that image gray level does not change over a small time interval. Denoting the
spatial derivatives of the image gray level I(x,y,t) by I, I,, the temporal derivative
by I, and the velocity of an image point in the z- and y-directions by u = (u,v), the
following constraint is obtained:

Lu+Iv+1;=0 ®)

This equation, called the optical flow constraint equation, defines the component of the
flow in the direction of the gradient [21]. We assume the optical flow to be constant within
a small region. Each of the n measurements in the region provides an equation of the form
(8) and thus we obtain the over-determined system of equations

Isu+1, =0, C))

where I, denotes, as before, the matrix of spatial gradients (I, I,,;), I; the vector of
temporal derivatives, and u = (u, v) the optical flow. The least-squares solution to (9) is
given by

u=—(I"r)r. (10)

As a noise model we consider zero-mean i.i.d. noise in the spatial and temporal deriva-
tives. As in the previous section, we assume equal variance o 2 for the noise in the spatial
derivatives in the two directions and we assume that higher than second-order noise terms
can be ignored.

The statistics of (10) are well understood, as these are classical linear equations. The
expected value of the flow, using a second-order Taylor expansion, converges in probabil-
ity to

u=u —noiM' ', (11)

11
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where, as before, the actual values are denoted by primes.

Equation (11) is very similar to (7) and shows the bias depends on the gradient direc-
tion (that is, the texture) in the region. The estimated flow is always underestimated in
length and its orientation is biased towards the majority of gradients.

Fig. 12 shows a variant of a pattern created by Hajime Ouchi [26]. The pattern con-
sists of two rectangular checkerboard patterns oriented in orthogonal directions —a back-
ground orientation surrounding an inner ring. Small retinal motions, or slight movements
of the paper, cause a segmentation of the inset pattern, and motion of the inset relative to
the surround.

———
====STTIE===C
=== =2

Figure 12: A pattern similar to the one by Ouchi.

The tiles used to make up the pattern are longer than they are wide, leading to a gra-
dient distribution in a small region with many more normal flow measurements in one
direction than the other. Since the tiles in the two regions of the figure have different
orientations, the estimated regional optical flow vectors are different. The difference be-
tween the bias in the inset and the bias in the surrounding area is interpreted as motion
of the ring. In addition to computing flow, the visual system also performs segmentation,
which is why a clear relative motion of the inset is seen.

2.1 The inherent problem

We have thus shown that points, lines and image motion will be biased. An important
question arises. Is there bias because of the architecture of the vision system? Is the
bias due to the linear estimation only? Could it be corrected using more sophisticated
statistical techniques, or could it be avoided?

It is well known that linear estimation is biased if there are errors in all the mea-
surement variables, but any method of compensating for the bias requires knowledge of
the statistics of the noise. In the noise models considered in the previous sections, this
amounts to knowledge of the covariance matrix of the noise. If this were available, inverse
filters could be applied to reconstruct the gray level signal, and the corrected least squares
estimator could be used to remove the asymptotic bias when solving linear systems on

12
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the basis of image derivatives. The major problem, however, lies in the acquisition of the
statistics of the noise. We argue that often it is not possible to obtain accurate enough
estimates of the noise parameters to improve the solution.

There exist other models for computing optical flow. Besides gradient-based models
there are frequency domain and correlation models, but computationally they are not very
different. In all the models there is a stage in which smoothness assumptions are made
and measurements within a region are combined to obtain more exact measurements. At
this stage statistical difficulties occur, and noisy estimates lead to bias. For an extensive
discussion of the statistics of optical flow estimation see [18].

In recent years the technique of total least squares for solving systems of linear equa-
tions has received a lot of attention. The problematic bias arises because in the system
of equations Ax = b, there is error in the variables in matrix A in addition to the error
in the variables in vector b. The nonlinear total least squares estimator has been shown
to provide an asymptotically unbiased solution for such systems, if the noise variables
are independent and identically distributed. This means that we have to know the relative
amounts of noise in the error variables, that is, the ratios of the two spatial and temporal
derivative noise terms or the noise in position, but information about noise ratios is diffi-
cult to compute. It can be obtained only from the variation in the estimated variables over
the image. There is another problem with this technique: the variance is larger. Total least
squares is known to perform very poorly if outliers are present, and these are difficult to
detect from a few measurements.

Why is it so difficult to obtain accurate estimates of the noise parameters? To acquire
a good noise statistic a lot of data is required, so data needs to be taken from large spatial
areas acquired over a period of time, but the models used for the estimation can only be
assumed to hold locally. Thus to integrate more data, models of the scene need to be
acquired. Specifically, long edges and bars need to be detected, and in the case of motion,
discontinuities due to changes in depth and differently moving entities need to be detected
and the scene segmented. If the noise parameters stayed fixed for extended periods of
time it would be possible to acquire enough data to closely approximate these parameters,
but usually the noise parameters do not stay fixed long enough. Sensor characteristics
may stay fixed, but there are many other sources of noise besides sensor noise. The
lighting conditions, the physical properties of the objects being viewed, the orientation of
the viewer in 3D space, and the sequence of eye movements all have influences on the
noise. Aside from all these factors, in order to estimate derivatives (or to compute Fourier
transforms) the system needs to interpolate. The accuracy of interpolation can depend in
complex ways on the pattern of gray levels in the image.

Thus, it appears that it is very hard to deal with the structure from motion problem
using the local measurements of the sort considered. In whatever way we extract points,
lines or local movement, we start with an unavoidable error in the measurements. In
the case where the cameras are far apart, we would need to make measurements in a
whole image patch. This is, at the very least, a sensible alternative, if we need to move
beyond points and lines. In the case where the cameras are close together, we have at
least the option of considering local image motion measurements that are perpendicular
to edges, the so-called normal flow. Unbiased estimates for normal flow are possible. The
sensitivity of the problem, however, suggests that we should be looking for constraints
that are of a global nature, so that little local mistakes should not matter.

Let us then concentrate on the second module, the one devoted to estimating 3D mo-
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tion. Addressing the problem starting with the normal flow values, that is, without at-
tempting to estimate correspondence or flow at the beginning stages, is known under the
heading of “direct methods.” Work on this subject is sparse and mainly due to two re-
search groups [23, 9, 10, 12, 22]. In the sequel we discuss global constraints on the basis
of normal flow, i.e., constraints involving quantities that are the outputs of filters with
finite extent (values in patches).

3 The 3D transformation

3.1 The epipolar and visibility constraints

If correspondence or image motion is available, the epipolar constraint shows how the
image measurements are related to the 3D rigid motion and the scene. The epipolar
constraint can be easily understood in the discrete case. Consider two cameras at two
positions, with their coordinate systems related by a rigid transformation, and a scene
point. The scene point, together with the camera centers define the so called epipolar
plane which intersects the image planes in the epipolar lines. The epipolar constraint then
states that a point in one image has to be matched with a point lying on the corresponding
epipolar line in the other image. Deviation from the epipolar constraint is the epipolar
error. Minimization of epipolar errors is the basis of most 3D motion estimation algo-
rithms. For the differential case of video, the epipolar constraint is obtained from the
image motion equations as (t X r) - (f +w x r) = 0 [8]. One is interested in the estimates
of translation t and rotation & which best satisfy the epipolar constraint at every point r
according to some criteria of deviation. Usually the Euclidean norm is considered leading
to the minimization of function.

Me,,:// [(Exr) (F+@xr)] dr (12)

image

If, however, the image motion field is not known and we have at our disposal only
one component of it along the image gradient, i.e., if only the normal flow is known, then
the epipolar constraint cannot be applied. In this case, if r is the motion vector at a point
(x,y) and n = (n,, ny,0) is a unit vector in gradient direction, the normal motion u, is

u, = (t-n)- n. (13)

The difference between the cases of correspondence or flow vs. normal flow is already
clear. In the former case, (3) is valid. This is a vector equation on the image plane (i.e.,
it consists of two scalar equations). In the latter case, only (13) is available, and this is
a single scalar equation. In this case, only the visibility constraint can be applied. This
constraint states that the scene, to be visible, has to lie in front of the camera. In other
words, the depth Z of the scene has to be positive. Substituting (3) into (13) and solving
for the estimated depth Z or range R, we obtain for an estimate t, & at each point r:

. N uT(f:) ‘n

Z(orR) = m (14)

If the numerator and denominator of (14) have opposite signs, negative depth is computed.
Thus, to utilize the positivity constraint one must search for the motion t, cw that produces
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a minimum number of negative depth estimates. Formally, if r is an image point, define
the indicator function

~f 1for (uT(t) n) ((F — uree(@)) -n) <0
Lna(r) = { 0 for (u(t) - [ @

Then estimation of 3D motion from normal flow amounts to minimizing [10, 11, 23] the

function
My = / / La(x)dr. (15)

image

Finding 3D motion through the minimization of negative depth amounts to a search
problem which, if done blidnly, is five-dimensional. In [9, 10, 12] geometric constraints
have been discovered that reduce the search to multiple three-dimensional searches. In
addition, the introduced techniques become pattern recognition procedures because they
amount to searching for global patterns of image measurements. These patterns encode
the 3D motion parameters.

Algorithms based on minimizing negative depth are robust and fully automatic as they
do not rely on correspondence. Extensive experimentation, however, demonstrates that
there is always some uncertainty associated with the solution. For example, the direction
of translation t is estimated as the intersection of t with the image plane. The solution
found, however, is not a single point, but an area, which obviously contains the solution.
This area could be small or elongated and this appears to be the best one can do using this
constraint.

On the other hand, traditional epipolar minimization approaches provide a specific
answer for the 3D motion. What is not known, however, is that the solution obtained with
this technique, a result of a minimization process, could be anywhere inside some area if
the initial conditions of the minimization are slightly perturbed. In other words, whether
we utilize the visibility constraint with the values of the normal flow or we employ the
epipolar constraint with image correspondence, we will have uncertainty. The next section
makes this explicit.

3.2 The ambiguity

Let’s assume that, despite the problems mentioned, a motion field can be estimated to
some degree of accuracy, and thus optic flow is available. There exists a veritable cornu-
copia of techniques for finding 3D motion from optic flow [27]. Almost all techniques are
based on the so-called epipolar constraint, which was explained before.

Experience has shown that estimating 3D motion by minimizing the epipolar error,
or variations of it, is a very difficult problem. One main reason for this difficulty has to
do with the apparent confusion between translation and rotation in the motion field. This
is easy to understand at an intuitive level. If we look straight ahead at a shallow scene,
whether we rotate around our vertical axis or translate parallel to the scene, the motion
field at the center of the image is very similar in the two cases. Thus, for example, transla-
tion along the z axis is confused with rotation around the y axis. The basic understanding
of this confusion has attracted few investigators over the years. (See [7, 8] for a review.)
It has been shown that the confusion exists no matter what estimator is used, proving that
there is an inherent limitation to the estimation of 3D motion from data of only a limited
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field of view. This has been shown in [13] through a statistical analysis of all the possible
computational models that can be used to derive 3D motion is possible to perform. Next,
this analysis is carried out for the classic epipolar minimization.

Any approach to 3D motion estimation using as input optic flow would minimize
function (12). Thus, we perform a topographic analysis of the five-dimensional surface
described by this function (two dimensions for t/|t| and three for w). We want to know
how the valleys of (12) are structured and what the properties of the minima are at the
locations that will be found by different estimators. Specifically, we are interested in the
relationship between the 3D motion errors in the minima of (12). Expressing r in terms of
the real motion, function (12) can be expressed in terms of the actual and estimated motion
parameters t, w, t and & (or, equivalently, the actual motion parameters t, w and the errors
t. =t —t,w, = w— @) and the depth Z of the viewed scene. To conduct any analysis, a
model for the scene is needed. We are interested in the statistically expected values of the
motion estimates resulting from all possible scenes. Thus, as our probabilistic model we
assume that the depth values of the scene are uniformly distributed between two arbitrary
values Zmin and Zimax (0 < Zmin < Zmax)-

Thus, we obtain the function

Z=Zmax
E.p, = / MepdZ (16)
Z="Zmin

measuring deviation from the epipolar constraint. Since for the scene in view we employ a
probabilistic model, the results are of a statistical nature, that is, the geometric constraints
between t., w, at the minima of (16) that we shall uncover should be interpreted as being
likely to occur. Our approach expresses function (16) in terms of t, w, t . and w, and finds
the conditions that t. and w. satisfy at the local minima which represent solutions of the
different estimation algorithms. Procedures for estimating 3D motion can be classified
into those estimating either the translation or rotation as a first step and the remaining
component (that is, the rotation or translation) as a second step, and those estimating all
components simultaneously. Procedures of the former kind result when systems utilize in-
ertial sensors which provide them with estimates of one of the components of the motion,
or when two-step motion estimation algorithms are used.

Thus, three cases need to be studied: the case were no prior information about 3D
motion is available and the cases where an estimate of translation or rotation is available
with some error. Imagine that somehow the rotation has been estimated, with an error w .
Then our function becomes two-dimensional in the variables t . and represents the space
of translational error parameters corresponding to a fixed rotational error. Similarly, given
a translational error t., the functions become three-dimensional in the variables w . and
represent the space of rotational errors corresponding to a fixed translational error. To
study the general case, one needs to consider the lowest valleys of the functions in 2D
subspaces which pass through 0. In the image processing literature, such local minima
are often referred to as ravine lines or courses.

The following convention is employed. We use letters with hat signs to represent
estimated quantities, unmarked letters to represent the actual quantities and the subscript
“€” to denote errors, where the error quantity is defined as the actual quantity minus the
estimated one. For example, u,o(w) represents actual rotational flow, u,., (&) estimated
rotational flow, t. the translational error vector, zg, = x9 — 2o, % = @ — &, etc.

Lett = (x0,¥0,1) and w = (v, 3,7). Assuming a small field of view, the quadratic
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terms in the image coordinates are very small relative to the linear and constant terms, and

are therefore ignored. The case of noise-free flow is studied, in which case the analysis

becomes a study of the inherent geometric confusion between rotation and translation.
Considering a circular aperture of radius e, setting the focal length f = 1, W = 1 and

W =1, the function in (16) becomes

Zmax €

me [ ] T{(E72-00)

Z=Zmin r=0 ¢=0

(y —Jo) — <y —Zyo + a. — %:v>
(x —:&0))2r}dr do dZ

where (r, ¢) are polar coordinates (z = r cos ¢, y = r sin ¢). Performing the integration,
one obtains

1 1 N N
E,, = me’ ((Zma,x — Zmin) <§%2€4 t1 (%2 (%5 +95)
00 (Bva+ 0B.) + 0+ B2) X ana + o)

1
00 () — 0 i) (5 37(00.50 = o.20) + 20,5,

1
Zmin

1 1
Z ) (1 (5. +5.) € + (o.y0 —yoe:vo)Q)) (17)
max

— yo. e )e” + 2 (zo,yo — Yo.wo) (£ocx. + ﬂoﬂe)) + <

a  Assume that the translation has been estimated with a certain error t . = (o, , Yo, , 0).
Then the relationship among the errors in 3D motion at the minima of (17) is obtained

from the first-order conditions gT]i = g—i = g—f: = 0, which yield

_ Yo. (In (Zmax) = In (Zmin))

e =

Zm X — 4min
5, = — 20, (10 Zaman) 10 Zumin) (18)
€ Zmax—Zmin
Ye = 0
It follows that a./B. = —xo_/Y0.,ve = 0. The first of these constraints is called the

orthogonality constraint ((a, 8¢) L (o, ,¥o,))-

b  Assuming that rotation has been estimated with an error («, 8¢, 7. ), the relationship
among the errors is obtained from 8‘1—? = ;y—f = 0. In this case, the relationship is
very elaborate and the translational error dependse on all the other parameters —that is, the
rotational error, the actual translation, the image size and the depth interval.
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¢ In the general case, we need to study the subspaces in which E changes least at its
absolute minimum; that is, we are interested in the direction of the smallest second deriva-
tive at 0, the point where the motion errors are zero. To find this direction, we compute
the Hessian at 0, that is the matrix of the second derivatives of E with respect to the
five motion error parameters, and compute the eigenvector corresponding to the smallest
eigenvalue. The scaled components of this vector amount to

= 2o Yo. = Yo ﬂe:_aez_g 7620

Qe = 2yOZmianax (ln (Zmax) —In (Zmin)) /

Lo

<(Zmax - Zmin) (Zmamein
- 1) + ((Zmax - Zmin)2 (Zmamein - 1)2

1/2
+4Z12nasz?nin(1n (Zmax) —In (Zmin))2) )

As can be seen, for points defined by this direction, the translational and rotational er-
rors are characterized by the “orthogonality constraint” « /8. = —xo,/yo. and by the
constraint o /yo = Zo/Jo, which is called the “line constraint.” It basically means that
(z0, yo) —the direction of the real translation, and (Z ¢, go ) —the direction of the estimated
translation, lie on a line passing from the origin.

The practical significance of this result is that, in general, it is not possible to find the
3D motion or 3D transformation using two views of a scene. No matter what procedure
is followed, the best one can hope for is to find a set of solutions. The above mentioned
results, translated into plain language, mean that when one sets up an optimization func-
tion to find the 3D motion, no matter what technique one is using, the function is such
that it has valleys at the locations of its minima. It’s very hard to show valleys of the
five-dimensional function (three rotational and two translational parameters), so we resort
to showing the valleys for the translation only (two parameters). Let’s say that E is the
function one chooses to optimize in order to find the 3D motion (or rigid transformation),
that is, the desired translation and rotation constituting the global minimum of E. The
following procedure shows the valleys for the translation. For each possible translation,
estimate the corresponding rotation from the data. One can then plot E as a function of
the translation. Fig. 13 shows such a valley for two frames of a video sequence. Video 1
[http://www.cfar.umd.edu/users/yiannis/proc-ieee/video01.mpg] shows the valley for the
translation, with the function E painted on the sphere. (During the illustration, points cor-
responding to negative depth are removed, thus reducing the ambiguity.) Fig. 14 shows
just one view of the sphere. Every point of the sphere represents the direction of a possible
translation. Red indicates the lowest points of the optimizing function. One can clearly
see a valley. It is worth noting that the actual solution lies inside the valley but it is not
necessarily the lowest point in the valley, if such a point exists. The valley may turn out
to be elongated and thin, or quite large, depending on the uncertainty in the data. One
can attempt a reconstruction of the scene from two frames in a video only if the corre-
sponding valley has a small extent. In Video 2 [video02.mpg] we show the valleys for all
video frames for the translation for the underlying camera motion that captured the video
in Video 3 [videoO3.mpg]. Fig. 15a shows just the valley for two frames of the video,
one frame of which is shown in Fig. 15b. Deep red signifies the lowest part of the valley.
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Clearly there are parts of the video where the valley is highly restricted, as there are parts
where the valley has a very large extent. Failure to accurately localize the solution for the
3D motion will create problems in shape reconstruction. See, for example, the object in
Video 4 [video04.mpg]. Video 5 [video05.mpg] shows the depth recovery as one moves
along the corresponding translation valley obtained from two consecutive frames of the
video (as the slider moves from left to right, the recovered translation moves along all
points in the valley). Clearly, even in the case of this smooth object, there is quite a lot of
variability in the recovered shape for different translations inside this small valley.

Error Function

Pl FOE position on extended image plane

Figure 13: Minimizing E (translation only). Figure 14: The valley of the optimizing
function painted on the sphere.

The preceding analysis on the ambiguity was based on the minimization of the epipo-
lar constraint. But if we minimize instead the negative depth constraint, we will find very
similar results (see [13]). Thus, the ambiguity is not an artifact of the technique used but
is inherent in the problem.

3.2.1 Spherical eyes

Why is it that biological systems that need to fly and thus require good estimates of 3D
motion (insects, birds) have panoramic vision implemented either as a compound eye or
by placing camera-type eyes on opposite sides of the head? This is a fascinating question
that has remained open since the time of the pioneer investigator, Sigmund Exner, at the
beginning of this century. The obvious answer is, of course, that flying systems should
perceive the whole space around them —thus panoramic vision emerged. There is, how-
ever, a deeper mathematical reason and it has to with the ability of a system to estimate
3D motion when it analyzes panoramic images, as shown in this section. Put simply, a
spherical eye (360 degree field of view) is superior to a planar eye (restricted field) with
regard to 3D motion estimation. Recall that, given a sequence of images, 3D motion is es-
timated by minimizing function E that represents deviation from the epipolar constraint.
It was shown that in the case of images captured by a planar eye (e.g., a common video
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(a) The translation valley for two frames (b) One frame from a sequence.
of the sequence. The image size is de-
noted by four corners

Figure 15:

camera), this function has a special topography which is such that the errors in the mo-
tion are mingled, causing confusion between rotation and translation and thus producing
a wrong result. If, however, the field of view goes to 360 degrees, the topography of the
surface drastically changes with the minimum clearly standing out. It is no wonder then
that flying organisms possess panoramic vision!

The analysis that leads to this result is almost identical to the analysis performed for
planar eyes. Panoramic vision is modeled by projecting onto a sphere, with the sphere’s
center as the center of projection (Fig. 1b). In this case, the image r of any point R is
r= %, with R being the norm of R (the range), and the image motion is

1

"= IRIF

1
((t-r)r—t) —wxr= Eutr(t)+umt(w). (19)
The function M., representing deviation from the epipolar constraint on the sphere has
the exact same form as in the plane for our nomenclature. We integrate over the range R

within an interval bounded by R, and Ry, and obtain

E.p, =
Riax

/ // {(I‘X(;%Xt)_(wfxrﬁ'(ﬁXr)}QdAdR

Rnin sphere

where A refers to a surface element. Due to the sphere’s symmetry, for each point r
on the sphere, there exists a point with coordinates —r. Since uy,(r) = u,(—r) and
Upot(r) = —uyot(—r), when the integrand is expanded the product terms integrated over
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the sphere vanish. Thus

E., =
Rmax

/ // {WJF (wexr)- (b Xr))z}dAdR

Rmin sphere

a Assuming that translation t has been estimated, the w . that minimizes E., is w, =
0, since the resulting function is non-negative quadratic in w . (minimum at zero). The
difference between sphere and plane is already clear. In the spherical case, as shown here,
if an error in the translation is made we do not need to compensate for it by making an
error in the rotation (w. = 0), while in the planar case we need to compensate to ensure
that the orthogonality constraint is satisfied!

b Assuming that rotation has been estimated with an error w ., what is the translation t
that minimizes F,.,? Since R is assumed to be uniformly distributed, integrating over 12
does not alter the form of the error in the optimization. Thus, E ., consists of the sum of

e K = K, // ((tx &) -r)*dA

sphere

L:L1// (wex 1) - (i x x))%d4,

sphere

where K, L, are multiplicative factors depending only on R i, and R,,,x. For angles
between t,t and t,w, in the range of O to w/2, K and L are monotonic functions. K
attains its minimum when t = t and L when t L w.. Fix the distance between t and
t leading to a certain value K, and change the position of t. L takes its minimum when
(t x t) - w. = 0, as follows from the cosine theorem. Thus E., achieves its minimum
when t lies on the great circle passing through t and w ., with the exact position depending
on |w,| and the scene in view.

¢ For the general case where no information about rotation or translation is available,
we study the subspaces where E ., changes the least at its absolute minimum, i.e., we are
again interested in the direction of the smallest second derivative at 0. For points defined
by this direction we calculate, using Maple, t = t and w, L t.

The analysis of the negative depth optimization constraint, which is much harder than
the case of epipolar minimization, provides similar results (see [13]).

Table 1 summarizes the results for both constraints.

The preceding results demonstrate the advantages of spherical eyes for the process
of 3D motion estimation. Table 1 lists the eight out of ten cases which lead to clearly
defined error configurations. It shows that 3D motion can be estimated more accurately
with spherical eyes. Depending on the estimation procedure used—and systems might
use different procedures for different tasks—either the translation or the rotation can be
estimated very accurately. For planar eyes, this is not the case, as for all possible proce-
dures there exists confusion between the translation and rotation. The error configurations
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Table 1: Summary of results

Spherical Eye Camera-type Eye
Epipolar minimiza- (a) Given a translational (a) For a fixed transla-
tion, given op- error t., the rotational tional error (zo_, ¥o_),
tic flow error w, = 0 the rotational error
] o (e, Be,ve) is  of
b) Without an -
® formation 11 p:n(())ralrrlld the form 7. =0,
’ ac/Be = —wo, /o,
we Lt
(b) Without any a priori
information about the
motion, the errors sat-
isfy 7. = 0, /B =
—o. /Yo, To/Yo =
o, /Yo.
Minimization of (a) Given a rotational er- (a) Given a rotational er-
negative depth ror w., the transla- ror, the translational
volume, given tional errort, = 0 error is of the form
normal flow (b) Without any prior in- 7o./yo. = ac/Be
formation, t. = 0 and (b) Without any error in-
welt formation, the errors
satisfy v = 0,
ae/ﬂe = —Xo, /yOe,

xo/yo = Zo. /Yo.

22



=

BMVC

2002

also allow systems with inertial sensors to use more efficient estimation procedures. If a
system utilizes a gyrosensor which provides an approximate estimate of its rotation, it can
employ a simple algorithm based on the negative depth constraint for only translational
motion fields to derive its translation and obtain a very accurate estimate. Such algo-
rithms are much easier to implement than algorithms designed for completely unknown
rigid motions, as they amount to searches in 2D as opposed to 5D spaces [10]. Simi-
larly, there exist computational advantages for systems with translational inertial sensors
in estimating the remaining unknown rotation.

3.3 Camera technology: Building new eyes

Since it turns out that spherical eyes such as the ones of insects, or, in general, panoramic
vision provides much better capability for 3D motion estimation, and since the problem of
building accurate space and action descriptions depends on accurate 3D motion computa-
tion, it makes sense to reconsider what the best eye for model building should be. There
are a few ways to create panoramic vision cameras, and the recent literature is rich in al-
ternative approaches, but there is a way to take advantage of both the panoramic vision of
flying systems and the high resolution vision of primates. An eye like the one in Fig. 16,
assembled from a few video cameras arranged on the surface of a sphere and capable of
simultaneous recording,1 can easily estimate 3D motion since, while it is moving, it is
sampling a spherical motion field!

Figure 16: A compound-like eye composed of conventional video cameras.

An eye like the one in Fig. 16 not only has panoramic properties, eliminating the rota-
tion/translation confusion, but it has the unexpected benefit of making it easy to estimate
image motion with high accuracy. Any two cameras with overlapping fields of view also
provide high-resolution stereo vision, and this collection of stereo systems makes it pos-
sible to locate a large number of depth discontinuities. It is well known that, given scene
discontinuities, image motion can be estimated very accurately. As a consequence, the
eye in Fig. 16 is very well suited to developing accurate models of the world.

We built our own imaging system, called the Argus eye.? (We are currently working
on a new version consisting of twelve cameras). Fig. 17a shows a schematic version of

!Like a compound eye with video cameras replacing ommatidia
2Named after a mythological figure, the guardian of Hera (the goddess of Olympus).
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Figure 17: The Argus eye. (a) Schematic. (b) Implementation.
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Figure 18: Initial valleys from each camera Figure 19: Translation valleys after derota-
(translation). tion.

24



Figure 20: Valley for the whole system (translation).

the Argus eye, consisting of six cameras arranged to point outwards. Fig. 17b shows
an actual view of the system, and Video 6 [video06.mpg] shows graphically what such a
system sees (it samples parts of the visual sphere). When the Argus eye is moving with
an unrestricted 3D motion collecting synchronized video from all six cameras, it becomes
easy to compute its 3D motion using data from all six videos, if the cameras are calibrated
in an extrinsic sense. If we analyze each video separately we find, at each instant, a valley
for the translation of each of the cameras, as shown in Fig. 18. As the rotation of each
camera is the same as the rotation of the system, there are easy ways to compute the
rotation. For example, consider one camera. For each translation inside the valley, there
is a corresponding rotation. For all translations the corresponding rotational values lie
on a surface in 3D space. Considering all cameras, these surfaces intersect at one point
in space which provides the rotation. Video 7 [videoO7.mpg] shows the growth of these
surfaces and their intersection.) If we then derotate each one of the videos the valleys
become much thinner (Fig. 19), and bringing them all to the same coordinate system
provides a unique translation for the whole system, as shown in Fig. 20. Using these
values, one can perform impressive reconstructions of the scene, with many applications
to graphics and augmented reality [4].

4 Shape: State of the art

If we put aside panoramic vision and we concentrate on conventional cameras, given a
video we should be able to recover some information about the camera’s 3D motion and
the shape of the scene. According to the preceding discussion, the best we can hope for
is an answer with an associated uncertainty. We can, for example, reconstruct the camera
path, that is, place the camera coordinate system in space for each video frame. See, for
example, Video 8 [video08.mpg] denoting a sequence and Video 9 [video09.mpg] show-
ing the placement of the camera coordinate system in space. The employed algorithms
give promising results in the recovery of shape. For example, from a small part of the
video in Video 10a [videol0a.mpg] (a Pooh game), we recovered the shape shown in
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Video 10b [video10b.mpg], using the algorithms in [5]. We know, however, that from
every two consecutive frames we can only hope for a valley where the translation lies;
there is, of course, a corresponding uncertainty in the rotational estimate. As a result, we
do not know exactly how the cameras are placed and, consequently, we can have a whole
set of scene models consistent with the data and the uncertainty in the 3D motion. Simply
put, there will be uncertainty in the estimation of the scene structure. It is worth asking
the question: How is a model for the scene distorted because of errors in the viewing
geometry? It turns out [16] that the transformation relating the computed depth to the
actual depth is a Cremona transformation. This is easy to see. If t,w are the estimated
3D motion parameters and t, = t — t, we = w — w the errors, then (3) provides the value
Uy, of the flow on direction n:

J—_ wu®-n
U, — Ut (@W) - n

or

~

7=7.D with D= uu(t)on
g (t) -1+ Zuper (We) - m

(20)

Thus, the estimated depth Z is related to the real depth Z by a multiplicative factor D, the
distortion, which is a Cremona transformation [16].
Equation (20) can be written as

(D= 1)r+ (t = Dt) + DZu,e.] - m=0

which fora fixedn, D, t, t, w. represents a surface in (r, Z) space, which has the obvious
property that points on it are distorted by the same factor D. The distortion space has very
interesting properties with consequences in algorithms estimating shape. Its structure, in
conjunction with psychophysical measurements, predicts various illusions of mispercep-
tion of shape and structure [16].

By now it is clear that from a video sequence we can hope to recover valleys contain-
ing the translation and rotation (instantaneous motion) and a set of possible scene models
M; using images ¢ and 7+ 1 in the sequence. To produce the ultimate 3D percept, we must
put all the models extracted from different viewpoints into the same coordinate system.
Somehow, the video frames need to be linked, but as they are linked they should provide
an accurate model of the scene. It should be emphasized, however, that up to this point
no correspondence process has been yet attempted.

If we assume for a moment that correspondence is known for a small number of points
in any two frames, then this becomes very valuable information. Consider having two
views, 1 and 2, of a scene and for each view we also have sets of possible models //; and
M. Since both views look at the same scene, the correct answer for model m ; € M; and
ma € My is such that mq and me are related by a similarity transformation (Euclidean
plus scale), which is trivial to check since a number of point correspondences is available.
Thus, by checking all models in M and M5 to find out if they are related to each other
via a similarity transformation, we can reduce the ambiguity. As a matter of fact by doing
so we can shrink the size of the valleys to a few pixels.?

3Having correspondences and associated depth makes things very easy because the motion problem becomes
linear.
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So, it would really pay off if we could perform matching of a number of points. But we
should recall that asking a question about correspondence at this point in the development
is very different than asking correspondence questions when one is given two images
and no more information. At this stage we already have some knowledge about camera
placement and the scene model, we already know about the viewing geometry, with some
uncertainty no doubt.

The analysis up to now demonstrates that the problem we consider is a chicken-egg
problem. To find the 2D transformation (flow or correspondence) we need some infor-
mation about depth boundaries; that way we will know not to smooth across boundaries.
But to obtain depth information we need to know the 3D transformation which in turn
depends on the 2D transformation.

It thus appears, on the basis of computational arguments, that the problem of structure
from motion needs a number of feedback loops, a new way in which the three different
modules interact. We believe this problem opens very important and new research avenues
and can lead to solutions of the correspondence problem.

5 Feedback loops: Matching image patches and
blending statistics with geometry

5.1 The reason for feedback

When neuroscience revealed that feedback loops appear to be involved at several levels
of cortical processing, vision theorists became comfortable with the idea that feedback
could be some form of iteration implementing an optimization process. However, this
view does not offer an effective way to uncover the intricacies of the feedback process. In
[3] a new theory is developed which introduces a feedback loop that operates on patches
rather than points and lines. We outline this theory here.

The solution to the structure from motion problem is contaminated by errors in the
measurement of features, as we have seen in the preceding analysis. We call this the
“small correspondence problem”, and it stands in opposition to the “large correspondence
problem”, which is the standard correspondence problem known in the image processing
literature. The large correspondence problem considers matching features in two images,
rather than localizing a feature in one image. One can think of the small correspondence
problem as a sort of self-correspondence within an image and the large correspondence
as a correspondence between images. Both of these problems affect the accuracy of any
structure from motion problem.

Let us outline how the small correspondence problem affects structure from motion
algorithms. The bias would not cause a problem if there were equal bias independent of
which image a feature appears in, because in that case we would only be considering a
different world point than we thought, but still the same world point, so our equations
would hold. The difficulty comes when our bias is different in the different images, and
because of foreshortening effects, this is often the case. In the situation of figure 21, the
localization of the corner point in the blue image will be closer to the true corner while the
corner point in the red image will be farther from the true corner. In this case we will not
be using the same world point as input to our structure from motion equations, violating
their assumptions. We will show in the following sections how this small correspondence
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Figure 21: The red camera is at the same orientation as the black world plane while the
blue camera is at a different orientation. The corner angle in the blue image is greater
than ninety degrees.

Figure 22: Correspondence between these images of the same building is impossible with
current techniques

problem can be overcome considering only the rotational transformation between cameras
and independent of the translation between cameras.

The large correspondence problem presents a different difficulty, and it is generally
recognized as an impediment to successful automatic structure from motion algorithms.
Corresponding between two images is hard because of the aliasing problem. That is,
if you have two scenes which have similar looking features it is difficult to tell them
apart. In figure 22 we see two views of the same building. Since the corners of the
windows are identical, we cannot correspond them with purely local information. The
formulas in our new framework show how to add the global positional information to the
local signal information to resolve this ambiguity when it is possible. These formulas
consider translation, but operate after the rotation has already been calculated. Based
on this framework, we postulate an ordering in egomotion calculation where rotation is
computed first and translation is computed later.

A central idea of this framework is the idea of patch correspondence. We make the
assumption that when we look at a scene with multiple cameras, we can find regions
which belong to the same planar patch. Using this assumption, we can formulate theorems
about our ability to find structure and motion. In figure 23, the blue regions are in patch
correspondence.

28



Figure 23: The blue regions are considered to be in patch correspondence

5.2 Cameras and Projection in a Fiducial Coordinate System

In contrast to the case of differential motion where we took the world coordinate system
to coincide with the camera coordinate system, here we follow a different approach. Since
we will consider multiple views, we take the world coordinate system at a fiducial posi-
tion and denote the center of a camera by a vector T (the translation). Then the camera
is oriented by some rotation, and we will also consider the camera’s intrinsic calibration
parameters, although we will often use “rotation” as a shorthand for rotation/internal cal-
ibration since the only different is an orthogonality constraint on a 3 x 3 matrix. Denote a
pointin 3D (R?) with its Euclidean coordinates P = [XY Z]*, and denote its image as the
ray [XY Z]! seen as an element of the projective plane (P?). Note that the coordinates of
the world and image points are both 3-vectors, so our representation for both coordinates
is identical. We can think of a camera as as device for considering the coordinates in R® to
be coordinates in P2, However, our world points exist in one fiducial coordinate system,
while the image points exist in the particular camera coordinate systems. Therefore our
camera is defined in relation to this fiducial coordinate system as follows. A camera C'
isamap C : R* — P? from world points to image points. Given a fiducial coordinate
system, we may represent this map with a pair (B, T), where B : R®> — R? is a linear
function (a 3x 3 matrix representing rotation and internal calibration), and T is a 3-vector
representing the camera center. The action of the map on a world point coordinate P is:

C(P) = B(P - T)

where C(P) is considered as a member of P2.

Here we have defined a camera as taking a world point and mapping it to an image
point through a general linear transformation on the world coordinates. Note that we have
defined the transformation as first a translation and then a matrix multiplication on the
world point. This allows us to easily undo the matrix multiplication on the image point
by applying B~!. Each camera will then be only a translation away from the fiducial
coordinate system, which allows easier derivation of our constraints. Additionally, note
that the matrix B is applied to the 3-vector resulting from the translations of the point P.
B may be considered to be a transformation on the world points R? or of the image points
IP2. In fact, B is usually split apart using a QR decomposition, with the orthogonal matrix
representing a rotation of the camera (a transformation on R?) and the residual matrix
representing a linear transformation of the image (a transformation on IP 2), depending on
the camera’s calibration parameters. Since the coordinates are the same, we ignore such
distinctions. The rotation is included in B and the translation is T.
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This formulation is somewhat different from the standard formulation for projection
of points, but it allows us to easily project world lines into our cameras. We use Pliicker
coordinates for lines because they allow for easy projection equations. A world line L is
the set of all the points P € R? such that P = (1 — \)Q; + AQ. for two points Q;, and
some scalar \. If we consider A = 1 and A = 0, we see that the line L contains both () ;

and (). The Pliicker coordinates of this line are L = [E‘d ] where:

L;i=Q:—Q direction of L 21
L, =L;xP moment of L (22)

Note that regardless of the choice of A to define P, the definition of L ,, is the same. Also,
the coordinates of L are homogeneous, and also L1 L, = 0.

An image line is a line in the projective plane, and may be given coordinates £ =
[l11213]*. The projection of a line onto a camera is as simple as the projection of a point
onto a camera. If we have a line L and a camera (B, T), then the image line associated
with L is

2=B"T(L,, - TxLy) (23)

It should be noted that when the image points P are transformed by a map B to p
with p = Bp, then the image lines [ are transformed to £ = B~T¢. 1If we have a world
coordinate system, and a camera in that coordinate system with parameters (B, T), then
we consider the p and £ to be the actual point and line measured in the image. For most
of the derivations, we use the normalized image lines/points

p=B'p £=(B")'t=B"

Whenever we assume that we already have the B, we will use the normalized image
lines/points for the calculations. We multiply the appropriate B or B ~* back later. We
show that by considering the prismatic line constraint, a new constraint we introduce
later, we are able, when using three cameras, to factor out the B matrices, thus giving this
notational convenience a theoretical basis.

We promised to formulate a theory based on patches rather than points and lines, so
now we introduce the singly textured plane. We would like to represent a periodic function
in one dimension extended to span a plane. We represent this object as a set of equally
spaced parallel lines embedded in a plane. That is, a set of parallel lines is a representation
of a sinusoid. According to Fourier’s theorem, any (nice) function is the sum of harmonic
components. Thus, a set of parallel lines is a new atom, a new fundamental object that is
hidden in a textured patch. Pulling a harmonic component out of an image patch, is an
important question but not addressed in this paper.

Consider one line from the set of equally spaced lines in the plane, and call it L . We
may represent this line using Pliicker coordinates as Ly = [{‘:l ] We take Qq to be a
point on Ly, and the point QQ,, = Qo + nd to be on the n'? line in the texture for some
direction d. Then it is easy to obtain that

LyxQo =Ly
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Figure 24: The Parameters of a Textured Plane

so that to get L, 5,

Lm,n:LdXQn
=LisxQo+ nLgxd
:Lm+nL>\

where Ly, = L;xd. Note that since both L ; and d are vectors which lie inside the plane,
we must have that L is normal to the textured plane. This leads us to the following
definition, illustrated in figure 24. A singly textured plane H is a set of lines, equally
spaced, embedded in a world plane. We give the textured plane coordinates

Lqg
H= |L,
Ly

with LYL,, = 0 and L] L = 0. The coordinates of each line in the plane, indexed by n

are:
_ Lq
Ln - |:Lm + TLL)\:|

We can then easily relate image lines to world lines. The set of image lines {Zn} ofa
singly textured plane H in a camera with parameters (B, T) is

{€, : £, = B~ (L, + nLy — TxLy)} (24)
where n € Z.
Finally, a comment on nomenclature. In this section we do not consider the case of
a moving camera collecting video but the general case of a set of cameras looking at the
same scene. In this case, the structure from motion problem amounts to finding the rigid
transformation relating any two cameras. This same problem is also known as (extrinsic)
calibration. Thus, we will be referring to the terms structure from motion and calibration
interchangeably.
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5.3 Reconstruction of textured plane

In order to formulate the constraints our philosophy is to find equations to reconstruct
world objects using image objects and then to use world constraints to find the constraints
on the images. To obtain the standard epipolar, trilinear, and quadrilinear constraints, we
can reconstruct a world line using two cameras and then intersect world lines to obtain
constraints on four cameras. We do not consider constraints on the world lines but instead
consider only constraints on the textured plane, which can be specialized to include the
standard constraints.

Also, note that these equations are formulated on many cameras (up to eight), but that
cameras can be considered to be at the same position and therefore identical. We might
measure two, or even three lines from the image of a textured plane and therefore the
eight camera constraint might operate on two cameras.

Let us now consider the reconstruction of a singly textured plane. The derivation is
too long for this paper. For full details see [3]. We must first describe the notation

> (25)

li1..in]€P1[1..0)

This is a summation which goes over all of the posifive permutations of [1..n], putting
each permutation into the indices [i;..i,,]. Also, as Fig. 25 shows, each camera can look
at a different line. The index of the line which the camera is viewing is called its line
index, and figures in the equations which follow.

One can show that if we have a textured plane H which is imaged by four cameras
into image lines Zi, and we know that our cameras have parameters (B, T;), and further,
we know that the image lines have indices n;, then we may reconstruct the textured plane
as shown in figure 25 and in the following equation.

Lqg
H=|L,
L
iy Niy |‘eia X£i4|(£i1 X£i2)
= Z 27’Li1 Nj, |£zl X Zig |£z3 T;l;‘ei‘;
[i1..ia]€P[1..4] 204, |‘eiz x L, |211 T
Note that | - | is the signed magnitude, and since the coordinates are homogeneous, it

does not matter which sign is chosen. It is important, however, that the sign is consistent
across the three components of the reconstruction. This equation is multilinear in all its
parameters, which allows for easy analysis for later proofs.

We do not need to know that integer index of the lines in order to reconstruct the
L,. This is important as it relates to the correspondence problem, because it means that
correspondence is irrelevant to find the direction of the lines in the singly textured plane.
We can also find the component L ;4 of the textured plane even if we only have two image
lines £; and £> which form a nonzero cross product. This cross product £ ; x £> will be the
direction of the lines of the singly textured plane.

If we have a plane which contains two textures a and b which are in different direc-
tions, we can use the above result to find the normal to the plane if this plane is viewed
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Figure 25: Reconstructing a textured plane.

by cameras 1 and 2. We merely must form the normal n as
n— (Zlya ngﬂ) X (ZLb ><£27b) (26)

Note that the translation plays no part in the calculation of the surface normal, and we
only need the derotated £, so that shape can be computed just by knowing rotation.

5.4 Prismatic line constraint and rotational feedback

Using the reconstruction of the direction of the textured plane lines we can form a con-
straint on three cameras. Clearly the directional component of the line depends only on
the rotation (recall that £ = BTE). That is, from at least two views of two lines on a planar
patch, we can recover the plane’s orientation from the recovered directional components
of the two lines, without any knowledge of the translation between the views or the line
indices. This means that merely having correspondence between patches is enough to
obtain rotation without having to find exact correspondence.

Pick three image lines £; in three cameras. Note that the £;’s do not necessarily cor-
respond to each other. The three planes II; defined by a camera center and the line £;
obviously form a prism in space, and it is a simple property of the prism that the normals
of its faces are coplanar. But these normals are (in projective coordinates) the vectors £ ;,
and so £2 (£, x £3) = 0 or E;FB;:L(B;TZl x B; T'83) = 0. This is the prismatic line
constraint which gives rise to linear algorithms for recovering the rotation given patch
correspondence without knowledge of how the lines in each patch correspond to each
other in the different views. See figure 26 for a diagram. Notice that the lines do not need
to lie within a plane, but we will not use this property. This constraint does not depend on
correspondence, as long as we know the cameras are looking at the same textured plane.
We therefore have a constraint on rotation which is independent of exact correspondence.

We can now formulate the first part of our feedback loop. Whatever we do to make
3D measurements, we have to start from image measurements. Whatever measurements
we make in the image, we are constrained by the distortion that has happened because
of the projection. If we could recover the rotation, we could in principle perform the
appropriate transformation in the image so that we minimize distortion, because knowing
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Figure 26: The prismatic line constraint operates on parallel lines.

just the rotation provides the orientation of the patch. Another way to think about this, is
that knowing the rotation allows us to perform signal processing on the object’s surface,
so that although our measurements are biased, they are biased the same in both cameras.
With this feedback loop we can overcome the small correspondence problem. We now
look at the large correspondence problem and the constraints which can solve it.

5.5 Textured plane constraints and the large correspondence
problem

In this section we introduce three new linear constraints on our textured plane object.
We show how these constraints can be put into a feedback mechanism which can find
correspondence if it is possible, and also tell us when it is impossible.

5.5.1 Quintilinear Constraint

The constraint developed in this section is formed on a singly textured plane with five
cameras. The constraint is symmetric to all five cameras, but can be thought of as the
constraint resulting from the transfer of one line in the singly textured plane reconstructed
by four cameras to a fifth camera. See Fig. 27 for a diagram.

Consider that we have five cameras (B;, T;), and measure five lines Zi, which have
indices n;. We may form £;using the ¢; and the B;. Using the above result, we may
reconstruct the textured plane to obtain the H using the lines one through four. Using this
reconstruction, we can find the fifth image line as:

£5 = Lm + TL5L)\ — T5 XLd (27)

If p; is a point on £5, we know that p;5 is perpendicular to £5, so that pg& = 0. We
can use this with the above equation to formulate the constraint. Note that since L 4 is
perpendicular to £5 that L is a point on the line £5, but if we set p = Ly, all of the right
hand side terms disappear and we have no constraint. Therefore we know that there is
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Figure 27: The Quintilinear Constraint operates on five image lines

only one equation in our constraint, and we use ps = Ly X £5. We can derive

0 =(Lgx#€)" (L, + nsLy — T5 xLy) (28)
=|Lg £5 L,,| + n5|Lg £5 Ly| — (Lgx£5)T (T5xLy) (29)

we use vector algebra and the fact that L } €5 = 0 to obtain —L Ly T £5 for the last term

= Z (21,14, (€3, X €3,) " (€5 x £3,) T} £,
[i1..i4]€PT(1..9)
+ 2n4,n5 (Liy X £3,) (€5 x £;,) T} £,
+ niy iy (Biy x £,) " (£, X £,)T5 s (30)

which we can expand to

= Z [niymi, (£s, X £:,) " (€5 % £3,) T} &5,
[i1..ia)ePT[1..4]
+ ngyng, (L, x€i)) " (Liy % 25)TiT4Zi4
+ nsni, (€5 % £;,) T (Liy x £3,) T s,
+ ng ns (i, <€) (£, x £, )TZ&4
+ iy iy (Liy X i) T (Liy x £i,) T3 £5] 31)

and this is equal to our constraint
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The viewing geometry of a singly textured plane (quintilinear constraint): Suppose
we have five cameras (B;, T;), and measure five lines Ei, which have indices n; from a
textured plane H. We may form the £; using the zi and the B; and have the following
constraint:

0= > Ny Ny (i X £iy) " (Lig X £3,) T L (32)

[i1..i5]€PT(1..5)

5.5.2 Incidence of textured plane

To derive the final two constraints, we use the following incidence condition between two
textured planes. From this you can guess that our next two constraints consider not a
singly textured plane but a single world plane with two sets of parallel lines in it. It can be
shown that, if we have two textured planes H; and Hs, then they lie on the same world
plane if and only if:

L5,1Lm,2 + LEQLW1 =0

and
Lg,lL)\,Z =0

and
LE,ZL)\,l =0

We use the first of these incidence conditions for the octilinear constraint and the final
two for the hexalinear constraint.

5.5.3 The hexalinear constraint

Let us assume that we have a doubly textured plane. We assume that we have six cameras,
four of which view one singly textured plane and two of which view the other. We may
reconstruct the L ; of the singly textured plane from the first four cameras if we know
the indices of the lines. We may reconstruct the L2 of the world line using the last
two cameras, without knowing the indices. We know that these two quantities must be
perpendicular, so that we get as a constraint:

The asymmetric viewing geometry of doubly textured plane (hexalinear constraint):

0= Z T4y |£5 ee Zil ||£z2 X£i3 |Ti4£i4 (33)
[i1..i4]€PT[1..4]

Notice in particular in this equation that n; and ng are not used, so that correspon-
dence is irrelevant for the second textured plane. We need to know correspondence for
one plane but not the other, so that this is a mixed rotational/translational constraint. See
Fig. 28 for a diagram.
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Figure 28: The Hexalinear Constraint operates on six image lines

5.5.4 The octilinear constraint
This constraint uses the textured plane incidence condition that
L;lr,leJ + L;lr,2Lm71 =0

We obtain immediately that the symmetric viewing geometry of a doubly textured plane
(octilinear constraint) is:

0= Z [nil NixMisMNig (213 X£i4)T(£i5 Xzis)
[i..is]eSPT[1..8]
: |211 £i2 £i7|£i8Ti8]
where sP™ indicates the positive permutations among the first four and the last four in-
dices, plus switching the first and last four indices wholesale. In other words, the indices

are
PT[1..4]P1[5..8] (34)

and
PT[5..8]PT[1..4] (35)

In this constraint we need to have two textured planes and to know the correspondence
for both planes, since all the integer indices n; . . . ng are used. See Fig. 29 for a diagram.

5.5.5 Translational feedback

In this section we explain a general process by which we may improve upon the transla-
tional calibration of a set of cameras which are in patch correspondence. We first argue
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Figure 29: The Octilinear Constraint operates on eight image lines

that one always has some initial calibration information. This is usually couched in terms
of having multiple cameras “looking at the same object”, but this is not a precise formula-
tion. There is a relation between the depth of the viewed scene and the distance between
the cameras which is the important factor for this initial calibration information. Indeed,
if we were to have a camera on Earth and a camera on Venus looking at terrain, we would
not expect to be able to correspond anything. However, if we turned the cameras towards
the sky, we certainly could correspond, since our baseline is small related to the distance
to the object. Thus any assumption which forms the basis for a correspondence method
can always be expressed as a constraint on the error in calibration with respect to the
distance to the scene.

Let us first look at an example of a scene for which it is impossible to compute cor-
respondence. If we have a collection of textured planes, and these planes do not contain
any wavelength greater than ), then it is clear that if our camera positions are not known
to accuracy at least less than A, then it is impossible to compute any sort of correspon-
dence. We may be able to compute the rotational calibration for the cameras from the
patch correspondence, but after that we are stuck.

On the other hand, if we know our camera positions to within @ << A, and we
have many textures with wavelengths greater than A, then it is possible to find our integer
indices with a high degree of probability. The smaller « is, the higher the degree of
probability that we can find the integer indices. Once we have the integer indices, we can
turn the constraint around and use it to improve the camera positions.
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Table 2: Concepts associated with small versus large correspondence
Small Correspondence || Large Correspondence
Quintilinear and Octilinear

Prismatic Constraint

__|| Constraints
Hexilinear Constraint
Shape (slant and tilt) Structure (depth)
Rotation Translation

Patch Correspondence || Line Index Correspondence

5.6 The Feedback Loop
5.6.1 Overview of patch results

Let us go over the results in this section to start to put it together into a coherent theory.
First of all, we have divided the feature matching problem on images into the small and
large correspondence problems. We can see that different types of correspondence and
scene properties belong to these two problems, so this separation makes sense theoreti-
cally. Our prismatic line constraint needs only patch correspondence, while our quinti-
linear and octilinear constraints need known integer indices. Our hexilinear is a mixed
constraint and this needs patch correspondence for one texture and integer index corre-
spondence for the other.

Further, we have seen that the small correspondence problem can be analyzed inde-
pendent of translation, while the large correspondence problem is inherently a transla-
tional problem. This comes from the basic fact that rotation is associated with local shape
(surface normal), while translation is associated with global shape (depth). See Table 2
for a synopsis.

5.6.2 Putting it all together

This section describes how a vision system might operate, using these constraints to re-
move the bias shown in the previous sections of this paper, and also to overcome the
correspondence problem which has plagued vision systems for two decades. We first as-
sume that the vision system has some sort of rotational inertial sensor, like the inner ear
of humans. This provides an initial estimate of rotation, and this estimate can be used
to overcome the small correspondence problem, because we can find local shape and
compute our measurements on the object surface. With these measurements, some initial
estimate of translation obtained from egomotion algorithms, and patch correspondences,
we can compute integer index correspondences using our multilinear constraints. We can
only compute these correspondences in places where we have long enough wavelengths.
These correspondences should allow us to improve our translational calibration, which
then will allow us to use smaller wavelengths for calibration. Two or three iterations of
this should be enough to obtain very accurate camera positions.

We finish with a summary of the feedback process. The feedback loop acquires two
distinct steps for processing multiple views. In the first step, signal processing in the
image provides answers for at least rotation using the prismatic line constraint, which
allows the beginning of the second step that amounts to signal processing on the world
plane. This classification makes intuitive sense also. If we hope to do better with a
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feedback loop, we must have a place in the loop where some new information comes in. If
we stick to the original measurements, there wouldn’t be much hope for improvement. So,
somewhere in the loop we must make measurements again. We think that the appropriate
place for it is after rotation between views is estimated because then shape (orientation of
planes) is easily obtained. We can then map image texture on the scene planes and, redo
the problem from the beginning. But after we do this, we must look for new constraints
arising from patch correspondence. Points and lines have no more information to provide.
The answer is textures, specifically harmonic components of them. That is equivalent to
parallel lines and the constraints we introduced are the appropriate tools.

6 Conclusions

We have described a number of processes underlying structure from motion. We concen-
trated on basic aspects of the distortion of image motion or correspondence, the distortion
of the viewing geometry or 3D motion and the distortion of shape. Our computational
arguments suggest new avenues for studying the problem namely the development of
feedback loops where all modules interact. We argued that an important component of
the feedback should be patch (region, area) correspondence, i.e., the constraints that arise
by corresponding entities where the relevant measurements are the outputs of filters with
finite support. Textures are such a candidate. We developed a number of new constraints
relating primitive textures to structure and motion. The study of the statistical properties
of a patch in conjunction with multiple view geometry is one of our current projects. For
example, one can develop mathematical theorems relating the statistics of texture and the
uncertainty in the viewing geometry to the ability to perform a match between textured
patches [3]. In this paper we concentrated on a static scene. The real problem, however,
must address scenes which contain independent motion. We are working on this problem
by addressing the structure from motion problem in scale space. For an example of our
approach, see [15]. Finally, our ability to initiate feedback processes allows us to perform
calibration of networks of hundreds of cameras, to an unprecedented degree of accuracy.
Thus, we can calibrate negative Argus eyes, such as camera networks observing a spe-
cific area (Fig. 30). Observing then nonrigid movement in that area allows reconstruction
of shape through a combination of stereo and video cues. This gives rise to 3D video
and other applications, but, most importantly, it provides a new representation for action,
namely 3D motion fields. This is discussed in detail in [2].

Figure 30:
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