View Synthesisusing Convex and Visual Hulls

Y. Wexler R. Chellappa
Center for Automation Research
University of Maryland
College Park

Abstract

This paper discusses two efficient methods for image based rendering. Both
algorithms approximate the world object. One uses the convex hull and the
other uses the visual hull. We show that the overhead of using the latter is
not always justified and in some cases, might even hurt. We demonstrate the
method on real images from a studio-like setting in which many cameras are
used, after a simple calibration procedure.

The novelties of this paper include showing that projective calibration
suffices for this computation and providing simpler formulation that is base
only on image measurements.

1 Introduction

This paper considers the problem of image-based rendering given many images around an
object. Given this collection of views we want to generate a new view of the scene from
some given camera. For the application of view synthesis, the goal is to quickly generate
a new image for each video frame. In this case, the construction of a full geometrical
model is not needed. When the object in the scene moves, each frame may present a
substantially different object. Model construction is a complex operation and updating it
even more so.

In recent work, [12] showed that this can be done without using voxels or optical flow.
This results in a simpler method of using the visual hull ([9]) for view synthesis. In this
paper we show that strict Euclidean calibration is not needed and so the same geometrical
computation can be done when only projective calibration of the cameras is performed.
We discuss a special case of the visual hull — the convex hull — whose special form leads
to simpler algorithms that may suffice, and, in some cases might be preferred.

1.1 PreviousWork

There is a an abundance of work on scene modeling from multiple views. In [1] optical
flow is used to synthesize novel views from two similar views. In [4] several views are
used to texture a 3D graphical model, resulting in a realistic looking scene. This requires
a considerable amount of manual work and thus is not applicable to a constantly changing
scene. The multi-camera studio setting in [7], in which many synchronized cameras are
used to capture a scene resembles our setting. Two methods are used in [7]. One relies
on a pairwise stereo algorithm in which depth maps from several nearby camera pairs are
combined. The resulting surfaces are then combined and textured in space. Shortcomings

153

BMVC 2001 doi:10.5244/C.15.17

@ (b) (© (d)

Figure 1. Convex and visual hulls of a simple scene. 1(a) Two bounding planes in each
image define the convex hull. 1(b) The resulting convex hull is used as an approximation
to the shape. 1(c) Any number of bounding planes in each image define the visual hull
1(d) The resulting visual hull. As can be seen, there are ghost artifacts in the shape.

@ (b) (© (d)

©) ®) (h)

Figure 2: Image warping process: 2(a) Top view of a scene object. 2(b) Silhouette is
extracted in two views. 2(c) The intersection of the silhouettes defines the approximation
of the object. 2(d) For each pixel in a new view, a ray is cast and intersected with the
convex hull. 2(e) Backward-facing planes are eliminated. 2(f) Only one intersection
point satisfies all the constraints. 2(g) This point is projected onto the source image. 2(h)
The pixel is copied onto the target image.

154

(a) Image and silhouette (b) Boundary (c) 2D Convex (@) 2D Visual
hull Hull

Figure 3: Representing the silhouettes: (a) One of the input images and the silhouette
which is extracted automatically. (b) the boundary of the silhouette. (c) The convex hull
of the silhouette is used to define the convex hull of the 3D object. (d) Approximation of
the silhouette with up to 100 line segments. The collection of segments defined the visual
hull of the 3D object. As can be seen, this optional step changes the silhouette very little.

of this approach include the reliance on texture for establishing correspondence, low ac-
curacy resulting from the small baseline between the cameras and a heavy computational
load. [9] defines the Visual Hull which is used in work as in [8] where a discrete com-
putation of the visual hull shows the usefulness of such a representation for multi-view
synthesis. The use of voxels simplifies shape representation, which is otherwise hard. Its
drawback is the added quantization error degrading the reconstruction. In order to over-
come this, papers such as [3, 5] and [10], use other means to “smooth” the voxels. Also,
the 3D volumetric representation limits the usability as it allows only small number of
voxels to be used due to significant memory and computational requirements. [11] uses
an Octree representation in order to alleviate this. Note that the need to position the 3D
grid itself requires Euclidean calibration.

This paper is organized as follows. The different representations and their construc-
tion is discussed in section 2 followed by a detailed description of the algorithms in section
3. Section 4 compares the two methods.

2 Modd Construction

We assume that many projectively calibrated views of the world are available and that
automatic extraction of the silhouettes of the objects is done (using [6]) . The goal is to
use this information to create new views. Creating the new views requires some estimation
of the shape using which, we can warp the existing images to create a new view.

For this purpose, the representation of the shape needs to be able to answer one type

155

of query: What is the intersection of any given ray with the shape?

In this paper we consider two shape representations. The convex hull and the visual
hull. As seen in figure 1, both representations produce a polyhedral model. The convex
hull results a convex polyhedron and the visual hull may result a more complex shape,
possibly with several connected components. Both shapes are upper bounds on the actual
object and the visual hull provides a tighter bound.

Once we have the parameters of the new image we want to synthesize (center of
projection, orientation, size, etc.) we can simulate the process of taking an image. We
shoot (lift) a ray through each pixel as shown in figure 2. The closest intersection of this
ray with the object is the world point whose color would be recorded in this pixel position.
Since there are many views of the object, a good estimate of this color can be given by
inspecting the projection of this point onto the given images.

2.1 Convex Hull

The convex hull of a shape is defined as the intersection of all half-spaces containing
it. Given a finite collection of views, can define a finite set of such half-spaces whose
intersection is guaranteed, by the definition of intersection, to contain the convex hull. As
we only have a finite set of views, we term it the apparent convex hull.

Given an image of the object, and the silhouette in that image, each line that is tangent
to the silhouette defines a world plane that is tangent to the object (see figure 4(b)).

Let [be a line in some image, whose camera matrix is M. The 4-vector Il = [- M
is a world plane containing all the world points that project onto /. This plane divides
the world points P into two groups, those on the plane (I - P = 0) and those not on it
(IT- P # 0). Since II is defined with respect to a given view, we can also distinguish the
two sides of it inside the viewing frustum and so II can define a half space that contains
all the world points whose projection onto the image lies on one side of . II can be scaled
so that a world point P = [X, Y, Z,1]T lies “outside” of the shape if P - IT < 0.

If [is tangent to the image of the object then IT == [- M is tangent to the object.
Therefore the intersection of all the half spaces that can be recovered from the given input
images define the apparent convex hull of the object. The intersection of any world ray
with the convex hull is the intersection with one of the planes that defines it.

The convex hull representation of the object is then a collection of planes {II;}%_,,
each of them is accompanied by an image line {I;}¥_, with its corresponding camera
matrix.

2.2 Visual Hull

One of the definitions of the visual hull is as the collection of world points that project
inside all the silhouettes in all possible images. Using this definition, given a finite collec-
tion of images, any given world point will belong to the visual hull only if its projection
onto all the images lies inside the silhouette.

Just as the convex hull can be represented as a collection of lines in the given images,
the visual hull can be represented by line segments where each segment is locally tangent
to the silhouette (see figure 3). This lets us treat the visual hull as an extension of the
previous case, or vice versa, treats the convex hull as a special case of the visual hull.
The usefulness of this representation is twofold. First, we reduce the amount of data that

156

needs to be stored as there are fewer pixels on the boundary than inside the silhouette. And
second, we can use less segments for the description with hardly degrading the shape.

While a line segment does not induce a volume in space that we can later intersect, it
does answer the only question that we need in order to do view synthesis. Let R be some
ray in the world. If the projection of R on the image intersects the line segment pg (see
figure 4) then the ray R might intersect the visual hull at the point that is the intersection
of R and the plane defined by the line containing the segment. The true intersection
point has to lie inside the silhouette and so information from other images can refine this
computation.

The use of line segments instead of (infinite) lines makes the visual hull more com-
plex and more computationally intensive. The gain is that it provides a better (i.e. tighter)
representation of the shape. In section 4 we show that this added complexity is not nec-
essarily needed for view synthesis of simple objects.

The visual hull representation of the object is then the collection of line segments in
each image {(p;, ¢;) }X_, accompanied by their corresponding camera matrices.

3 Algorithm Descriptions

In this section we describe the algorithms we use to generate new views using the convex
and the visual hulls. The special form of the convex hull leads to a simpler algorithm that
is substantially different.

The conceptual algorithm in both cases is similar: we lift a ray through each pixel and
then find the intersection of the ray with the shape. The world point that is the intersection
is projected onto a source image and thus induces a warping function which generates the
target image. The difference between the two methods is the actual intersection with the
shape. Also, special geometrical properties are used in each case to bypass some of the
work.

There are three important observations here:

1. Both the convex and visual hulls result in polyhedral models and so the mapping
between source image and the target image is done via 2D planar homographies.
The task of the algorithms is to find the correct homography for each pixel.

2. The above definition does not require a Euclidean frame of reference, as the only
relationship is that of incidence (and not, say, perpendicularity)

3. As both representations use tangent planes, a 3D ray intersects a facet only if its
projection intersects the line that defined the facet. This enables us to do all the
computations in (2D) image space.

The collection of rays given by the new view needs to be intersected with the representa-
tion of the object. We describe the two different methods below. The intersection of the
rays with the object gives the (projective) depth which can be used for view synthesis.

3.1 Rendering via Convex Hull

Let M be the new view. Let O = null(M) be the center of projection of the new camera.
Rays that emanate from M might intersect the convex hull at two points, front and back.

157

Regardless of the distance to these points, we can eliminate one of them as O has to be
outside of the half-space defined by the plane that it is viewing. This can be seen as
projective backface culling.

o!
o
o
(a) The vertices of the convex hull in- (b) An image line [defines the world
duce a subdivision of the image. Each plane II through the origin of the cam-
polygon is mapped via a planar ho- era. II is tangent to the object if [is
mography H to the original image. tangent to the silhouette. The crucial

observation here is that a 3D ray R in-
tersects II only if its projection inter-
sects I. This lets us use II implicitly.

After this simple step we are left with a collection of planes that are all facing the right
way. The intersection point of each ray R with the convex hull has to be in the inside of
the remaining half-spaces.

The simplest way of implementing it is to intersect R with each of the planes II and
maintain the only one that satisfies all of the constraints. This would require O(n * k)
where n is the number of pixels in the new image and & is the number of planes.

A better way to do this is to compute the dual convex hull of the planes and use the
resulting edges to divide the image into at most n. convex polygons as shown in figure
4(a), each corresponds to a facet of the convex hull. Computation of the dual convex hull
is O(k - log k) and the mapping of each polygon can be done via the graphics hardware
and thus is independent of the number of pixels. The number of planes (k) is several
orders of magnitude smaller than then number of pixels (n).

3.2 Rendering viathe Visual Hull

Let R be a ray emanating from the new view M. In each reference image, the projection
r of R may intersect some of the segments. Each intersection defines a semi-finite interval
along r and these intervals define the possible regions in the 3D world that R can intersect
the object. The intersection of R with the visual hull is the common regions in all given
views and so we need to combine (intersect) these regions.

Let ¥’ and ¥ be two views. Let o}, 03, ...o1, be the resulting collection of 2D seg-
ments defined in ¥'. Each segment o} = [start;, stop;] is defined by the (possibly infi-
nite) beginning and ending boundaries, according to some parameterization, of the line
r’. Some other view ®", with segments o', o} ..o}, has a different parameterization of
the ray v’ and thus in order to compute the intersection of the two ranges we need to map

158

Figure 4: Each line segment in each image defines a boundary for the visual hull.

one onto the other. As both r’ and r"" are projection of R, they are related through a single
1D projective transformation that can be easily recovered as part of the initialization step.
In our implementation we parameterize the point along the ray as a linear combination of
the epipole in the image and the point at infinity along the ray. Once recovered it maps the
second view onto the first and all that is left is to intersect the two ranges, which can be
done in time that is linear in the number of segments. Finally, the first intersection point
is the point whose projection is the closest to the epipole in the reference image, which is
the first boundary point after the intersection.

@) (b) ©

Figure 5: Computation of the visual hull. (a) rays are cast from some given view point.
(b) Another view defines the possible intersection ranges of the rays with the visual hull,
shown as bold line segments. (C) another view is added and the ranges are updated. The
update is done in 2D (see text).

4 Experiments

Our setting includes 64 cameras located in the KECK laboratory at the university of Mary-
land. They are arranged on eight columns at four corners and the four wall centers of the
room, and synchronized to capture images at video frame rate. We use the method de-
scribed above to calibrate the system. The point matches for the calibration are collected

159

Source Convex hull Visual Hull

)

© 0 © oM

Figure 6: Comparison of view synthesis with convex and visual hulls. The left column
shows the source image used for texturing. The right column shows the desired target im-
age for comparison. The inner columns show the warping of the source image to recreate
the target image. In the first row the two cameras are above each other, forming an angle
of about 30°. Note the ghost arm in the visual hull image. The second row corresponds
to a 45° angle between the cameras.

160

@ (b) © (d)

Figure 7: Behaviour in case of segmentation errors. One of the silhouettes was extracted
incorrectly 7(a). The convex hull remains the same 7(b) but the visual hull is distorted.
7(d) shows the target image for comparison.

by waving a point light source in the studio for a few minutes. Its location is extracted au-
tomatically and is used for projective calibration. The light is visible in about 40% of the
views in each frame, and we automatically choose a subset of cameras that have points
in common for the calibration. The computation is propagated onto the other cameras.
For robustness, we use the RANSAC algorithm to reject outliers. A random sample (of
6 or 12 points) is chosen and a candidate camera matrix is computed as the least squares
solution of the projection equation [2]. The chosen solution is the one that minimized the
median of the total distances between the measured p” and the re-projected ones. We do
not compensate for radial distortion although the cameras are known to have a distortion
of several pixels on the boundary. The calibration gives camera matrices that have median
reprojection error of up to half a pixel while rejecting large outliers.

Figure 6 compares the difference between warping with the convex hull and the visual
hull. We use one source image and warp it to an existing target image, which was not used
in the rendering, as a measurement of the quality of the synthesis. We chose views that
are far apart. In the first row the cameras are aligned vertically and their optical axes
form an angle of about 30°. Both images suffer from parallax. Note the ghost arm that
appeared in the reconstruction from the visual hull. In the second row the cameras are
aligned horizontally, forming an angle of about 45°.

Although the object is not convex, there is a little difference in quality of the ren-
derings. The warped images are composed by the pixels in the target image that had an
intersection with the hulls. The differences between the images are due to the different
planes that were used to define the shape. In figure 6(f) for example, it is evident that the
planes form a convex blob and so the figure tends to curve forward. In figure 6(g) on the
other hand, further planes are used and so the warping is less monotonous.

The convex hull has an advantage over the visual hull. As automatic extraction of

161

the silhouette is known to be problematic, it often happens that one image contains bad
segmentation and parts of the objects are left out as is shown in figure 7. In such case,
the visual hull will carve these pieces away while the convex hull might not be affected.
As both methods define the shape as an intersection, they are less sensitive to over seg-
mentation. If the silhouette in one image is too large, it will just not contribute to the final
shape.

5 Summary and Conclusions

We have presented a unified framework for using the convex and visual hull that requires
only image measurements and projective calibration. It is extendible an arbitrary number
of views. Future research includes incorporation of more efficient algorithms to do the
classification of pixels to the planar facets that define the shape and the fusion of several
image to produce a target image that is of higher quality than the input ones.

References

[1] S. Avidan and A. Shashua. Novel view synthesis in tensor space. In Proc. CVPR, page Poster
session 6, 1997.

[2] S.Avidan and A. Shashua. Threading fundamental matrices. In IEEE Transactions on Pattern
Analysis and Machine Intelligence, volume 23(1), pages 73-77, 2001.

[3] G. Cross and A. Zisserman. Surface reconstruction from multiple views using apparent con-
tours and surface texture. In A. Leonardis, F. Solina, and R. Bajcsy, editors, NATO Advanced
Research Workshop on Confluence of Computer Vision and Computer Graphics, Ljubljana,
Slovenia, pages 25-47, 2000.

[4] P. E. Debevec, C. J. Taylor, and J. Malik. Modelling and rendering architecture from pho-
tographs: a hybrid geometry- and image-base approach. Technical report UCB/CSD-96-893,
University of California at Berkeley, 1996.

[5] A. W. Fitzgibbon, G. Cross, and A. Zisserman. Automatic 3D model construction for turn-
table sequences. In R. Koch and L. Van Gool, editors, 3D Structure from Multiple Images of
Large-Scale Environments, LNCS 1506, pages 155-170. Springer-Verlag, Jun 1998.

[6] T. Horprasert, D. Harwood, and L.S. Davis. A robust background subtraction and shadow
detection. In ACCV, 2000.

[7] T Kanade, P.W Rander, and P.J. Narayanan. Virtualized reality: Constructing virtual worlds
from real scenes. In IEEE Multimedia 4, pages 34-37, 1997.

[8] K.N.Kutulakos and S. M. Seitz. A theory of shape by space carving. Technical Report CSTR
692, University of Rochester, 1998.

[9] A. Laurentini. The visual hull concept for silhouette-based image understanding. IEEE PAMI,
16(2):150-162, Feb 1994.

[10] D. Snow, P. Viola, and R. Zabih. Exact voxel occupancy with graph cuts. In IEEE Conference
on Computer Vision and Pattern Recognition, volume 1, pages 345-352, 2000.

[11] R. Szeliski. Rapid octree construction from image sequences. Computer Vision, Graphics and
Image Processing, 58(1):23-32, Jul 1993.

[12] C W. Matusik, R. Raskar Buehler, Gortler S.J., and L. McMillan. Image-based visual hulls.
In SIGGRAPH, pages 369-374, 2000.

162

