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Abstract

This paper presents an inspection method of particle contamination for semiconductor
reticles using continuous wavelet transform. Particle defect is considered as a
singularity in the reticle image, and wavelet transform is applied to detect such an event.
By taking the local maxima of wavelet transform as suspected defects, the candidate
pixels under inspection reduce to a small fraction of the whole image. From the
evolution of wavelet coefficients across scales, two features are extracted to identify
detects among the suspected defects, Lipschitz Exponent (L.E.) and smoothing factor.
With the rules of LE and smoothing factor trained from the image database, the defects
can be detected with high accuracy. From the test of synthetic reticle images with
defects at different size, it is concluded that the maximum scale of wavelet under which
the defect is still visible can not be over about 8 times as much as the defect size. The
simulation of a real reticle image and synthetic defects shows the effectiveness of the
present method.

Keywords: defect detection, reticle inspection, wavelet transform, Lipschitz exponent
and smoothing factor

1  Introduction

Periodic semiconductor reticle inspection is a critical component of the integrated
circuit fabrication process. Even a single defect on a reticle will cause a catastrophic
yield loss, since reticles (or photomasks) are used to print integrated circuits (ICs) on
semiconductor wafers. Foreign material in the form of particle can impact yield
significantly and must be detected repeatedly during IC production [1,2].
Most vision-based inspection techniques fall into one of two general categories:
methods based on image-to-image comparison, and methods for checking generic
properties and design rules. In image-to image comparison method, the image taken
from the reticle is compared either with an image free of defect (so-called golden
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image) or with the image taken from another die that is supposedly identical to the
image being tested. Obviously the precise image alignment (registration) [3] is the
critical step to expose the defect successfully.  In the second category, the image is
tested against a set of design rules or local properties, and violations are reported as
defects. The local properties can be the defect size, defect texture and the gray variation
around the defect etc.
Most existing defect inspection systems adopt the comparison strategy [2,4,5].  The
present paper reports on a research effort in which the particle-like defect can be
detected straightforward without comparison. Defects in the image are considered as
singularities, and continuous wavelet transform is applied to detect such singular events.
By taking the local maxima of wavelet transform across scales as suspected defects, the
candidate pixels under inspection reduce to a tiny fraction of the whole image [6]. Then
from the evolution of wavelet coefficients across scales, two features are extracted to
identify detects, Lipschitz exponent (L.E.) and smoothing factor. With the rules of LE
and smoothing factor trained from the image database, the defects can be detected with
high accuracy.
The paper is organized as follows. In Section 2 we review some basic aspects of the
wavelet transform. In Section 3, Lipschitz exponent and smoothing factor are
introduced to describe the feature of the defects. Section 4 summarizes the algorithms
and discusses the relationship between the particle size detectable and the wavelet scale
applied. Section 5 presents the experiments of a real reticle image and syntactic defects.

2    Continuous Wavelet Transform

The Morlet-Grossmann definition of the continuous wavelet transform for a 1-
dimensional signal )(xf , the space of all square integrable functions, is [7]:
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Where:
- ),( baWT  is the wavelet coefficient of the function )(xf
- )(xψ  is the analyzing wavelet

- a  (>0) is the scale parameter

- b  is the position parameter
In Fourier space, we have:

)()()),(( * ωωω aFaaWTF Ψ=                        (2)

When the scale a varies, the filter )(* ωaΨ  is only reduced or dilated while keeping

the same pattern.
One of the outstanding characteristics of wavelet transform is the localization capability
due to the compact support of the wavelet function in the time and frequency space [8].
With Fourier transform, there is little response to a singularity. On the contrast, it is

prominent with wavelet transform. If a signal is singular at 0x , there exists a sequence
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of wavelet transform maxima that converge to 0x when the scales decreases. So we can

detect all singularities from the position of the local wavelet transform maxima [9].
By continuous wavelet transform, we mean the two parameters of wavelet function,
scale and position, are continuous, although in practical computation these parameters
have to take discrete values. For singularity detection, the continuous wavelet transform
is preferred to the discrete transform, since the singularity information across scales will
be emphasized although the reconstruction information from the continuous wavelet
coefficients is redundant.

3  Feature Selection
As mentioned above, one signal sharp variation such as singularities produces local
maxima at different scales. Therefore, tracking the local wavelet transform maxima
across scales will highlight the defects significantly. We know that the local wavelet
maxima at the scale a  measures the derivative of the signal smoothed at this scale, but
it is not clear how to combine these different values to characterize the signal
variations[10]. Moreover, for an isolated particle and a particle in a corner within an
image, the wavelet transform will take the local maximum at these two positions.
However, the evolution of wavelet coefficient with scales is distinguishable, because
these given points consist in different detailed information at different scales. So by
tracking the variation of wavelet coefficient with scales, singularities can be further
classified. Two features are derived from the evolution of wavelet transform across
scales: Lipschitz exponent (L.E) α and smoothing factor σ.

3.1  Lipschitz exponent

In mathematics, Lipschitz exponent is a measure to describe the local property of a
function. It is defined as follow [9]. Let n be a positive integer and .1+≤≤ nn α  A

function f(x) is said to be Lipschitz α , at 0x , if and only if there exists two constants A

and 00 >h , and a polynomial of order n, )(xPn , such that for 0hh <

α
hAhxPhxf n ≤+−+ )()( 00 (3)

In fact the polynomial )(xPn  is the first n+1 terms of the Taylor series of )(xf  at

0x .  If )(xf  is differentiable at 0x , then it is Lipschitz α =1; If the uniform Lipschitz

regularity α is larger, the singularity at 0x will be more “regular” . If )(xf  is

discontinuous but bounded in the neighborhood of 0x (i.e. step edge), its uniform

Lipschitz exponent in the neighborhood of 0x is 0.  For the 2 dimensional signal

(images) similar definition can be derived from the simple extension of the above.
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A function ),( yxf  is uniformly Lipschitz α over ),(),(),( dcbayx ×∈ if and only

if there exists a constant K >0 such that for all ),(),(),( dcbayx ×∈ , the wavelet

transform satisfies [10]
αKayxWTf ≤),(        (4)

This shows that the Lipschitz exponent of a function can be measured from the
evolution across scales of the absolute wavelet value. The method is described as
follows.  Firstly, perform wavelet transform across scales; secondly, locate the local
maximum wavelet transform at each scale; then the following vector is obtained,

( )( ) ( )( ) ( )( ) �� yxfWTyxfWTyxfWT
iaaa ,,,,,

21
  (5)

Finally by least-squares fitting, Lipschitz exponent α can be extracted from the above
vector[6].
In theory, the Lipschitz exponent of ramp function is 1; For step edge it is 0, and for
Dirac  –1. The negative L.E means it is more singular than discontinuity. In practical
computing, we obtained slightly different values from the theoretical ones. This is
because we are limited by the resolution, that is, we can not compute the wavelet
transform at scales finer than 1.

3.2  Smoothing Factor

Smoothing factor can be another feature together with Lipschitz exponent to describe
the local sharp variations of a function. A signal is usually not singular in the
neighborhood of local sharp variations. A particle defect is foreign material in the
reticle maybe distinguishable from the pattern in intensity.  However, in the process of
producing an image a diversity of factors result in the smoothness of the variation
between particles and patterns in the reticle. This makes the particle detection more

challenging. We can model the smoothness variation at 0x as a singularity convoluted

with a Gaussian of variance σ2.  Here σ is called the smoothing factor, which can
indicate the particle image size in a sense.
We suppose that locally, the signal ),( yxf  is equal to the convolution of a function

),( yxh , which has a singularity at ( )00, yx , with a Gaussian ),( yxgσ  of variance

σ2
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By performing wavelet transform over (6), we can prove that the wavelet transform at
the scale a  of a singularity smoothed by a Gaussian of variance σ2 is equal to the

wavelet transform of the non-smoothed singularity ),( yxh at the scale

22
0 σ+= as , i.e.,
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Since αKsyxhWTa ≤),( , we can obtain

1
0),( −≤ αKasyxfWTa  With 22

0 σ+= as      (8)

The above formula shows that the parameters α,σ and Κ can describe different

properties of the sharp variation that occurs at ( )00, yx , which can be used as the

features to classify the singularities. For example, if the signal ),( yxf  is amplified by

Κ’, then Κ becomes ΚΚ’, but α and σ are not affected. On the other hand, if the signal is
smoothed by a Gaussian of variance σ0

2, then α and Κ remains unaffected, but σ2

becomes σ2+σ0
2.

 α,σ and Κ are computed as follows.  If the local wavelet maxima at three scales j=1,2,3

are 1WT , 2WT and 3WT  respectively, then (8) becomes
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By solving the above equations, we can get these three parameters. Normally the
solutions obtained in this way are not stable. Actually we can have a vector as (5) for

scale �� ,,,, 21 jaaa . Then α,σ and Κ may be modeled using nonlinear least

squares, such as Levenbrg-Marquardt method [11].
In sum, there are two strategies to extract features from the evolution of wavelet
transform across scales to define the defect among the suspected defects. One is to
apply Lipschitz exponent solely, and the other is to apply Lipschitz exponent and
smoothing factor together. With the first method, the computation is simple, and the
modeling is less accurate. Using the second method, we estimate two features to define
the defect. Although the computation is complex, the defect can be detected more
precisely.

4  Particle Defect Detection Procedure

We can summarize the detect procedure of particle defect in reticles as follows,

Step 1. Calculate the wavelet transform WT of the reticle images at scale ja .

Step 2. Find the local maximum wavelet transform LMWT, and pick this pixel jp as

the defect candidate.
Step 3. Track the wavelet coefficient vector as (5), and calculate Lipschitz exponent α

and smoothing factor σ with the strategies described in Section 3.

Step 4. Decide whether the pixel jp  is a true defect in terms of α or α and σ value. The

rules are defined by the training of the real and synthetic reticle images with
known particle defects.
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There may be problems with missing true defects when the local maximum wavelet
coefficient is defined as a suspected defect. As mentioned above, it has been proved that

if a signal is singular at 0x , there exists a sequence of wavelet transform maxima that

converges to 0x when the scales decreases. Since each singularity consists in detailed

information coving a certain range of scales, the inappropriate scale accounts for the
missing true defects.
So which scale of wavelet can be chosen to define the suspected defects in the reticle is
an important question. By testing a set of synthetic reticle images with particles at

different size, we obtained the relationship between the detectable particle size pd  and

wavelet scales a  applied, as shown in Figure 1. In the synthetic images the position
and the gray level intensity of particles are distributed randomly. By fitting the

measured data we can see that the maximum scale ups  for detection is about 8.35 times

as much as the detectable particle size pd . This is reasonable because we choose

Mexican hat as the wavelet. For 1 dimensional Mexican hat the compact support is

around [-5,5].  So we take pup ds 8= . On the other hand the minimum scale los under

which the defect is visible is the particle size, i.e., plo ds = , as shown in dashed line in

the figure 1.

pup ds 8=                     (10a)

plo ds =                        (10b)

In the practical inspection,  (10a) and (10b) can be applied as the guide to choose
wavelet scale to define the suspected defects. If we choose the scale larger than the

upper bound ups , the defect will not be visible. In addition, in terms of this relationship,

by choosing different scales we can detect defects in different range of size. In a reticle
image, the visible suspected defects under scale a are at relevant sizes.

5  Experimental Results

The following so-called two-dimensional Mexican hat is chosen as the wavelet due to
its ability to diagnose singularities.

222

22

)2(),(
yx

eyxyx
+

−
−−=ψ (11)

Figure 2 is the experimental results on a 256*256 synthetic reticle image. Figure 2(a)
shows the reticle image with 6 defects, labeled as A to F. Correspondingly, the size is

from 2 to 7 pixels. Using scale a  from ups2  to ups7 , the suspected defects at different

size are obtained shown in Figure 2 (b) to (g).  For upsa 2= in Figure 2(b), all the

defects are visible. In Figure 2(c), Defect A and B disappear at scale upsa 3= .  Then

C, D, E and F gradually disappear with the increase of scale. This is in agreement with
(9a) and (9b).  Actually in Figure 2(b) there are 254 defect candidates. Using the
strategy 1 described in Section 3, we estimate the L.E of these defect candidates. With
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the application of the Lipschitz exponent constraint [6], the candidate defect pixel
reduces to 120 (out of 256*256) with the entire defect existing, as shown in Figure 2(h).
Figure 3 (a) is a real reticle image with a particle defect highlighted near the center. As
described above, the local maxima of wavelet coefficients are calculated across scales.
The results are shown from Figure 3(b) to (g). These images show the suspected
position of defects with the given defect highlighted by an enclosed white square. The

defect in the image is about 4* 4 pixels. In Figure 3(a), since scale losa < , the defect

is not been highlighted. With the increase in scale, there are fewer local maxima.
However, the defect remains visible across the scales. Up to scale a =12, there are still
121 pixels posing as possible defects. Based on these pixels, L.E. values were estimated
using least-squares method from the vector of wavelet coefficients across different
scales. Applying the LE constraints (-2<LE<1) across the image, the candidate pixels
reduces to 7 (out of 128∗128), and the defect particle remains near the center of the
image, as illustrated in Figure 3(h).

6  Conclusions and Further Works
The localization properties of continuous wavelet transform have enabled us to develop
an effective method to detect particle defect in reticle images.  By taking local
maximum wavelet transform as the suspected defect, we can reduce the defect
candidates to be a small fraction out of the whole image. Two features can be used to
describe the evolution of wavelet coefficients across scales of these candidate defects,
Lipschitz exponents and smoothing factor.  The rule of Lipschitz exponent has been
applied successfully to highlight the defect to the extent such as 7 out 128*128 in a real
reticle image and 120 out of 256*256 in a synthetic image. The strategy with both LE
and smooth factor will be tested in the near future.
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Figure. 1 detectable defect size for a wavelet scale
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(a) Synthetic image with 6 defects: A, B, C, D, E & F    (b) upsa 2= , all visible

  
(c) upsa 3= , A & B disappear     (d) upsa 4= A, B & D disappear

  
(e) upsa 5= , A, B, C & D disappear     (f) upsa 6= A, B, C, D & E disappear
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(g) upsa 7= , A, B, C, D & E disappear                (h) 12=a  with LE rules

A: 2=pd , B: 3=pd , C: 4=pd , D: 5=pd , E: 6=pd , F: 7=pd
Fig. 2 Synthetic reticle image with defects at different size

            

(a)  Reticle image                 (b) 2=a                    (c) 4=a                 (d) 6=a

            
(e) 8=a                  (f) 10=a                  (g) 12=a               (h) 12=a  for –2<α<1

Fig. 3 real defect image
(a) A real reticle image with a defect near the center  (b)~(g) defect candidates defined
by the local maximum wavelet coefficient across scale a  (h) Defect detection specified
by –2<α<1


