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Abstract

This paper presents a novel method for hand tracking. It uses a 3D model
built from quadrics which approximates the anatomy of a human hand. This
approach allows for the use of results from projective geometry that yield an
elegant technique to generate the projection of the model as a set of conics, as
well as providing an efficient ray tracing algorithm to handle self-occlusion.
Once the model is projected, an Unscented Kalman Filter is used to update its
pose in order to minimise the geometric error between the model projection
and a video sequence on the background. Results from experiments with real
data show the accuracy of the technique.

1 Introduction

Hand tracking has great potential as a tool for better human-computer interaction. This
paper introduces a new method for hand tracking that estimates the pose of a 3D hand
model constructed from truncated quadrics by using an Unscented Kalman Filter [11, 14].
The use of quadrics as building blocks for the model permits the application of powerful
techniques concerning the projective geometry of such surfaces [13, 5, 3], as well as the
handling of self-occlusion. An image of the model is then compared to a video sequence,
and the filter is then used to estimate the pose of the model (and its covariance matrix),
minimising the geometric error between the projection of the model and edges detected
in the image. An overview of the tracking system is shown in the flowchart on figure 1.

The next section presents a brief literature survey of hand tracking. Section 3 reviews
some of the material on projective geometry of quadrics and conics and on the Unscented
Kalman Filter that are used in the remainder of the paper. The tracking system proposed
here is detailed in section 4. Section 5 shows experimental results from real data, and the
conclusions are presented in section 6.

2 Literature Review

Different methods have been proposed to capture human hand motion. Rehg and Kanade
[12] introduced the use of a highly articulated 3D hand model for the tracking of a human
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Figure 1: Flowchart of the tracking system. A detailed description of each stage of the
process is given in section 4

hand. For tracking, the axes of the truncated cylinders that are used to model phalanges,
are projected onto the image, and local edges are found. Finger tip positions are measured
through a similar procedure. A nonlinear least squares method is used to minimise the
error between the measured joint and tip locations and the locations predicted by the
model. The system runs in real-time, however, dealing with occlusions and handling
background clutter remains a problem. Heap and Hogg [7] used a deformable 3D hand
shape model. The hand is modelled as a surface mesh which is constructed via PCA
from training examples. Real-time tracking is achieved by finding the closest possibly
deformed model matching the image. In [4], Cipolla and Hollinghurst presented a stereo
handtracking system using a 2D model deformable by affine transformations. Wu and
Huang [15] proposed a two-step algorithm to estimate the hand pose, first estimating
the global pose and subsequently finding the configuration of the joints. However, their
algorithm relies on the assumption that all fingertips are visible. Recently, Isard and
MacCormick [9] have presented a vision based drawing system. The 2D hand shape is
modelled with B-splines and partitioned sampling is used to track contours in real-time.

3 Theoretical Background

3.1 Projective Geometry of Quadrics and Conics

A quadric is a second degree implicit surface in 3D space, and it can be represented in
homogeneous coordinates as a symmetric

�����
matrix � such that �����	��
� [13]. The
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Figure 2: A truncated Quadric ��� , e.g. a truncated ellipsoid, can be obtained by finding
points on quadric � which satisfy � � � ��� � .

image of a quadric � 
����
		���
�

seen from a normalised projective camera � 
�� ������� is
a conic � given by � 
������! " � [3]. The tangent # to the conic at the point $&%'�
is given by # 
(� )+*-,.)0/1,.)023� � 
4�5$ . Therefore, the homogeneous representation of the
normal 6 of � at $ is given by 6 
�� ) * ,7) / , �-� � . If the matrix � of a quadric is singular,
the quadric is said to be degenerate. Different families of quadrics are obtained from
matrices � of different ranks. Particular cases of interest are:

ellipsoids, represented by matrices � with full rank;

cones and cylinders, represented by matrices � with 8:9�;�<>= ��? 
A@ ;
a pair of planes B and BDC , represented as � 
&BEBFC �HG BDCIB � with 8J91;K<>= ��? 
ML .

In order to employ quadrics for modelling more general shapes, it is necessary to
truncate them. For any quadric � the truncated quadric � � can be obtained by finding
points � satisfying:

� � �	��
 � (1)

and � � � �N� ��, (2)

where
�

is a matrix representing a pair of clipping planes (see figure 2).

3.2 Nonlinear Filtering

The tracking of an object in 3D space from images can be formulated as a nonlinear esti-
mation problem. This formulation allows the use of any nonlinear estimation technique,
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such as Extended Kalman Filtering (EKF) [10, 1], the CONDENSATION algorithm [8], or
Monte Carlo methods [6]. The Unscented Kalman Filter (UKF), an alternative to the EKF,
has been proposed by Julier and Uhlmann [11]. It is provably superior to the EKF in most
practical situations. It is also computationally more efficient, thus permitting higher frame
rates of the tracking algorithm. The computation of Jacobian matrices is avoided, which
is necessary to propagate distributions in the EKF. Instead, a small number of carefully
chosen sample points is propagated in each estimation step, which provide a compact
parameterisation of the underlying distribution. This is also in contrast to random sam-
pling methods such as CONDENSATION or Monte Carlo based techniques which demand
a larger number of sample points, and are therefore computationally expensive.

Consider the nonlinear state transition equation� =�� G�� ? 
�� � � =���?J,	�7=�� G
� ?J,�� G��� G�� =�� G�� ? , (3)

where � describes the system dynamics,
� =���? is the � -dimensional state of the system at

timestep � , � =�� G�� ? is a control input vector, and � =�� G�� ? is the process noise. The
covariance matrix of the state distribution is given by ��� . A set of observations, related
to the state vector, are obtained through the equation� =�� G�� ? 
�� � � =�� G
� ?J,�� =�� G�� ? ,	� G��� G�� =�� G�� ? , (4)

where
� =�� G�� ? is the observation vector, � is the observation model and � =�� G�� ? is the

measurement noise. An overview of the filtering algorithm is given in algorithm 1.

Algorithm 1 Unscented Kalman Filtering (UKF) Algorithm.

1. Select a set of L�� sample points ��� , ) 
 � , L , �!�!� , L"� , as the columns of #%$ �&�'�.=�� � ��? .
2. Compute

�)( =�� � ��? 
+*� =�� � ��? and
� � =�� � ��? 
�� � G *� =�� � ��? .

3. Compute
� � =�� G�� � ��? by applying the system equation (3) to

� � =�� � ��? .
4. Compute the predicted state *� =�� G
� � �K? as

*� =�� G
� � ��? 
 �
L"� G
�

/�,-
�/. (

� � =�� G�� � ��?�� (5)

5. Compute
� � =�� G
� � ��? by applying the observation equation (4) to

� � =�� G
� � �K? .
6. Compute the predicted observation *� =�� G�� � ��? as

*� =�� G�� � ��? 
 �
L�� G��

/�,-
�0. (

� � =�� G�� � ��?	� (6)

7. Compute the innovation 1 =�� G2� ? 
 � =�� G2� ?F� *� =�� G2� � ��? from the current
measurement

� =�� G�� ? and the predicted observation *� =�� G
� � �K? .
8. Update the Kalman gain matrix 3 =�� G�� ? .
9. Update the estimate of the state vector

*� =�� G
� � � G�� ? 
+*� =�� G�� � ��? G 3 =�� G�� ?41 =�� G�� ?	� (7)
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Figure 3: The 27 DOF hand model is constructed from 37 truncated quadrics. Front view
(left) and exploded view (right) are shown.

4 3D Model Based Tracking

4.1 Description of the Hand Model

The hand model is built using a set of quadrics ��� , � % � ,�0�!� ,:@�� , approximately repre-
senting the anatomy of a real human hand as shown in figure 3. Similar to Rehg [12], we
use a hierarchical model with 27 degrees of freedom (DOF): 6 for the global hand posi-
tion, 4 for the pose of each finger and 5 for pose of the thumb. The DOF for each joint
correspond to the DOF of a real hand. Starting from the palm and ending at the tips, the
coordinate system of each quadric is defined relative to the previous one in the hierarchy.

The palm is modelled using a truncated cylinder, its top and bottom closed by half-
ellipsoids. Each finger consists of three segments of a cone, one for each phalanx. They
are connected by hemispheres, representing the joints. The phalanges of the thumb are
represented by an ellipsoid, a truncated cylinder and a truncated cone. Hemispheres are
used for the tips of fingers and thumb. The shape parameters of each quadric are set by
taking measurements from a real hand.

4.2 Generation of the Contours

Each clipped quadric of the hand model is projected individually as described in section
3.1, generating a list of clipped conics. For each conic matrix � we use eigendecomposi-
tion to obtain a factorisation given by � 
���� �
	 ���� , where� 
 ��� �

� � ��� (8)

with
��� � 
&� . The diagonal matrix 	 represents a conic aligned with the � - and � -axis

and centred at the origin. The matrix � is the representation in homogeneous coordinates
of a Euclidean transformation that maps this conic onto � . We can therefore draw � by
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Figure 4: A quadric � and its projection � on the image plane.

drawing 	 and transforming the rendered points according to � . The drawing of 	 is
carried out by different methods, depending on its rank. For 8J91;�< = 	 ? 
 @ we draw an
ellipse, for 8:9�;�<>= 	 ? 
AL we draw a pair of lines.

The next step is the handling of occlusion, achieved by a simple ray tracing algorithm.
Consider a point $ on the conic � , obtained by projecting the quadric � , as shown in
figure 4. The camera centre and $ define a 3D ray � . Each point � %�� is given by
� =�� ? 
 ��� ��� , where � is a free parameter determining the depth of the point in space,
such that the point � = ��? is at infinity and � =��!? is at the camera centre. The point of
intersection of the ray with the quadric � is found by solving the equation

� =	� ? � � � =	� ? 
� (9)

for � . Writing � 
 � � 		���
�
, the unique solution of (9) is given by � ( 
 �E � $�
1� .

In order to check if � =	� ( ? is visible, (9) is solved for each of the other quadrics � � of
the hand model. In the general case there are two solutions � � * and � �/ , yielding the points
where the ray intersects with quadric � � . The point � =�� ( ? is visible if � ( ��� ��� � ,�� , in
which case the point $ is drawn. Figure 5 shows an example of the projection of the hand
model with occlusion handling.

4.3 Construction of the State and Observation Vectors

The state vector
�

contains the global pose of the hand and the configuration of the joints.
Additionally, components modelling the hand motion, such as velocity and acceleration,
can be included. In the most general case the state vector will have dimension L � � , where��� � is the order of the dynamic model.

The observation vector
�

is obtained by detecting edges in the neighbourhood of the
projected hand model.
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Figure 5: Occlusion handling is achieved by a simple ray tracing algorithm. The 3D
model (left) and its generated contour (right) are shown.

Let � � 
�� � *� , � /� ,�0�!� , �������� be the set of visible (not occluded) points on the contour
generator of � � , and � � be the projection of � � . The image of each point �

 � is denoted
by $  � . The vector 6  � normal to � � at $  � can be obtained as described in section 3.1.

For each point $  � we look for edges along the normal 6  � (see for example [2]). For
this the intensity values in the image are convolved with the derivative of a Gaussian
kernel and an edge is assigned to the position 	

 � with the largest absolute value. The
observation vector

�
is constructed by stacking the inner products 6  � � 	  � into a single

vector.
The predicted observation vector for the UKF is obtained as follows: By projecting the

hand model corresponding to the state vector
� ( =�� G � � ��? we obtain a reference contour,

for which a list of image points 
 ( 
��-$  ��� is computed together with the corresponding
normals. Each of the remaining state vectors

� � =�� G � � ��? is used to compute new contours
and new lists 
 � of image points. The vectors

� � =�� G � � ��? are then constructed by stacking
the inner products 6  � � $  � , where the points $  � are in the list 
 � . The predicted observation
can be found according to equation 6.

Each component of the innovation vector will then have the form 6 � =	E���$ ? , where �$
is the weighted average of the contour points, 	 is the corresponding edge in the image and
6 is the corresponding normal vector of the reference contour. Therefore, a component
of the innovation is the distance between the average contour point and the corresponding
edge. Thus the innovation can be interpreted as the error in pixels between the projection
of the hand model and the edges in the image.

5 Experimental Results

Real data experiments were designed to test the proposed tracking algorithm. Two se-
quences of one hundred @�� � � L���� greyscale images of a pointing hand and an open hand,
respectively, were acquired. The parameters of the hand model were initially set manually
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Figure 6: Results of the tracking algorithm: The images in the top row show the frames
with the contours of the hand model superimposed. The images in the bottom row show
the corresponding 3D pose. The hand is tracked continuously over the complete sequence
of 100 frames.

Figure 7: Tracking of an open hand. The top row shows the contours superimposed on
the images, the bottom row shows the estimated 3D pose of the hand model.

to match the pose of the hand in the first frame of each sequence. Three DOF were given
to the motion of the hand: translation in � - and � -directions and rotation about the � -axis.
The dynamics of the hand was modelled using a second order process, i.e. using position,
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velocity and acceleration. The state vector was therefore

� 
 � � , � ,�����,��� ,���>, ����1,	�� ,
�� , ����� � � (10)

The results of the tracking algorithm are shown in figures 6 and 7. The images in the
top row show the contours superimposed on selected frames of the sequence, the images
in the bottom row show the corresponding 3D pose of the hand model. The tracking
system operates at a rate of 3 frames per second on a Celeron 433MHz machine.

It can be seen that the system is accurate, succeeding in obtaining the correct pose of
the hand. Although it is not operating in real-time yet, we expect to achieve this goal by
code optimisation and using a faster machine. Also, a less complex model, tailored to the
particular application, can be used for speeding up the processing.

6 Conclusion

This paper presented a novel model-based hand tracking system. The use of quadrics to
build the 3D model yields a practical and elegant method for generating the contours of
the model, which are then compared with the image data. This measurements are used
by an Unscented Kalman Filter to estimate the current motion parameters of the model.
Results with real data demonstrate the efficiency of the proposed method.

6.1 Future Work

It is desirable to estimate as many pose and motion parameters as possible. Preliminary
experiments suggest that, in order to increase the number of parameters, it is first neces-
sary to refine the shape of the model to obtain a better agreement between its projection
and the edges in image. This is currently done by hand, but the same framework pre-
sented here could be used to estimate the shape of the model from a set of still images, in
an off-line stage to be carried out before the tracking.

The use of multiple cameras in order to reduce ambiguity is under development. A
possible approach is to increase the length of the observation vector by stacking the mea-
surements carried out on different images.
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