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Abstract

The conventional area-based stereo matching algorithm suffers from two
problems, the windowing problem and computational cost. Multiple scale
analysis has long been adopted in vision research. Investigation of the
wavelet transform suggests that -- dilated wavelet basis functions provide
changeable window areas associated with the signal frequency components
and hierarchically represent signals with multiresolution structure. This paper
discusses the advantages of applying wavelet transforms to stereo matching
and the weakness of Mallat’s multiresolution analysis. The shift-invariant
dyadic wavelet transform is exploited to compute an image disparity map.
Experimental results with synthesised and real images are presented.

1 Introduction

Finding correspondence is an ill-posed problem in stereo vision. Area-based stereo
matching is one of the conventional solutions. It compares the intensity similarity
between windowed areas of two stereo images. The sum of squared difference (SSD)
[1] is commonly used as the similarity measure:
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where x is the pixel index over the stereo images L and R, τ indexes over the local area
around x within ±σ. It is well known that this method suffers from the windowing
problem and computational cost [1].

In order to alleviate these problems, multistage strategies were developed by vision
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researchers such as multistage matching by dividing images into small blocks of equal
size [2], multiscale matching based on Gaussian filtered images [3], [4], [5], and the
pyramid structure that generates sets of low-pass and band-pass filtered images [6]. A
more general hierarchical architecture and fast implementation was created by Mallat in
1989 following a study of wavelet concepts. This is known as wavelet multiresolution
analysis (MRA) [7].

The advantage of the wavelet transform is that it uses wide windows for low-
frequency components and narrow windows for high-frequency components [8]. These
windows are formed by dilations and translations of a prototype (or mother) wavelet.
Thus, if SSD matching is performed on the wavelet transforms of signals, the
windowing problem with the conventional SSD approach is naturally solved. However,
Mallat’s multiresolution analysis lacks shift-invariance, which will be discussed in the
following section. Stereo matching requires a shift-invariant transform because stereo
image pairs can be considered as the shifted versions of each other (with distortions).
This makes MRA unsuitable for matching.

This paper discusses the strengths of wavelet transforms when applied to stereo
matching and some alternative wavelet methods to Mallat’s MRA. The Dyadic wavelet
transform is exploited to compute a dense disparity map. Experimental results using
synthesised and real images are presented.

2 Properties of the Wavelet Transform for
Stereo Matching

Modern wavelet theory was motivated initially for the sake of a better time-frequency
signal representation than the short time Fourier transform (STFT) and to overcome its
drawbacks. In contrast with the STFT that uses a constant window for the whole signal,
the wavelet transform uses wide windows for low-frequency components and narrow
windows for high-frequency components [8]. It achieves this by decomposing a signal
into the dilations and translations of a mother wavelet.

Let ϕ(t) denote a mother wavelet, which is a small oscillatory function with finite
support. A family of wavelets ϕa,b(t) is then represented by

)/)(()( 2/1
, abtatba −= − ϕϕ (2)

where a is the scale parameter, b is the translation parameter, and  a, b∈R. The wavelet
transform represents a signal x(t) by an infinite set of such basis functions:

dtabtatxabWT )/)(()(),( 2/1 −= ∫ − ϕ (3)

2.1 Automatic Windowing Analysis

In order to illustrate the time-frequency resolution of a wavelet transform, Figure 1
shows the coverage of a wavelet in the time-frequency plane. It is evident that when the
frequency interval goes up by a scale factor, the time interval goes down by the same
factor.  Let ∆t and ∆f denote the window width of the mother wavelet in time and in the
spectral domain, and ∆tab and ∆fab are the corresponding denotations of the scaled and
shifted wavelet. That is:
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∆t⋅ ∆f = ∆tτ s⋅ ∆fτ s (4)
This reveals that the product of the window width of time and frequency  is constant

at all scales [8]. This property is one of the most important advantages that wavelet
transforms provide. In contrast with the STFT applying either narrow or wide window
(but not both) to the whole signal, wavelet transforms are able to analyse high-
frequency components using small windows and low-frequency components using big
windows. This property is ideal when dealing with non-stationary signals that contain
both short high-frequency components and long low-frequency components.

t ime

Figure 1 Time-frequency plane of wavelet transform: window area is constant at
all scales

An image is a typical non-stationary signal, which consists of a slowly changing
background and rapidly changing details. After decomposing an image, a set of images
at different resolutions is obtained. At coarser resolutions, the matching is performed by
comparing wider areas leading to larger uncertainty in disparity localisation. At finer
scales, the compared areas tend to be more localised and smaller uncertainty in disparity
localisation is expected. The windowing problem that occurs with SSD matching is then
naturally solved by choosing the right wavelet.

2.2 Why MRA Is not Suitable for Matching

In equation (3), if parameter a and b are continuous real values, then the transform is
called a continuous wavelet transform. The wavelet basis functions constitute an
overcomplete representation in which information is highly redundant. This redundancy
can be reduced by discretising a and b. Daubechies [9] found that when a=2n, b=k2n, n,
k  ∈ Z, the basis functions { )2(2)( kxx nn

kn −= −− ϕϕ } are orthogonal for certain

choices of wavelet. Stimulated by the pyramidal approach in vision, Mallat, as a former
vision researcher, proposed a fast implementation for the wavelet orthogonal
decomposition [7]. This is the well known multiresolution analysis (MRA).

MRA decomposes a signal into the same size subimages at dyadic scales. At each
scale an approximation part and a detail part are formed by passing the signal through a
half-band low-pass filter and a half-band high-pass filter, and subsequently
downsampling them by two.  The approximation part is then hierarchically
decomposed. Downsampling a signal simply discards every other sampling point. This
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operation reduces the number of signal samples by a half when the scale is doubled.
Shift-invariance (or time-invariance) means that if a signal is delayed in time, its

transform result is delayed as well. Downsampling is not shift-invariant. Neither,
therefore, is MRA. This issue was discussed by Strang [10] and the shift-invariance
problem was considered to be the main drawback of MRA.

For stereo matching, intuitively, one image can be assumed to be the shifted version
of the other. The shifted value with respect to each pixel is the disparity, which is
dependent on the pixel position. Only shift-invariant wavelet transforms can be used for
matching.

2.3 Shift-Invariant Wavelet Transforms

The continuous wavelet transform possesses the property of shift-invariance. However,
its high redundancy gives rise to high computational cost. Approximate shift-invariance
with effective computation needs to be achieved. Mallat used the dyadic wavelet
transform and the zero-crossings of the dyadic wavelet transform to reduce the
representation size [11]. Simoncell [12] built steerable filters to achieve a shiftable
transform that is jointly invariant in position, scale and orientation. More recently, a
shift-invariant complex wavelet transform [13] with perfect reconstruction has been
constructed and applied to image processing and computer vision.

The wavelets used in these papers could be applied to the matching problem. This
paper will discuss the application of the dyadic wavelet transform to disparity
computation. The motivation for this is discussed in the next section.

3 Correspondence Matching Using the
Dyadic Wavelet Transform

To simplify the numerical computations and maintain shift-invariance, the scale
parameter a of equation (3) is discretised along a dyadic sequence {2n, n ∈ Z} while
leaving the shift parameter b continuous. The dyadic wavelet transform (DWT(b, j))has
the following form:

dtbttxnbDWT nn )2/)((2)(),( 2/ −− −= ∫ ϕ (5)

Mallat [14] proved that under certain condition dyadic wavelet transform defines a
complete and stable representation. The algorithmic efficiency if gretly improved
compared with the continuous wavelet transform. The information is still redundant due
to the continuous translation parameter. However, it is good for matching task aiming at
dense disparity map output.

Figure 2 gives two signals (epipolar lines from two synthesised stereo images). The
decomposition results at three scales, 21, 22 and 23, are shown in Figure 3.

The sum of squared difference (SSD) [15] is applied to the transformed signals to
measure the similarity of the corresponding points. The smaller the SSD value, the more
likely it is that the points correspond to each other.  Unlike the conventional SSD,
directly applied to the image intensity value, the SSD here is applied to the wavelet
coefficients.
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Figure 2 Scan lines from stereo images
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Figure 3 1D dyadic wavelet transform at three scales

Let x1(t) and x2(t) be two scan lines of stereo images, their dyadic wavelet transforms
are denoted by ),2(1 tDWT n  and ),2(2 tDWT n , respectively, where n∈ N. The SSD
measure (ssd(n,x)) is defined as:
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where σ  is the size of an interval where the energy of the mother wavelet is mostly
concentrated [11].

From equation (6), it can be seen that at each scale the searching area is ( σn2− ,

σn2 ). Matching should be taken at as much scales as possible. The maximum scale
(nmax) should be determined by: lengthsignaln ≤σmax2 .

Besides the epipolar constraint [16], other constraints e.g. similarity, uniqueness,
ordering and continuity [17] are also applied along with equation (6). Figure 4 gives the
computed disparity result at three scales. The corresponding SSD values are also
recorded as a measure of the matching confidence. The smaller the SSD value is, the
higher is the confidence of the matching. For comparison, the parameter at three scales
is ploted in one figure, see Figure 5.

        left
----- right
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After the computation from the above steps, each pixel corresponds to two
parameters, its disparity value, d(n,x), and its SSD value, SSD  (n,x). The most intuitive
way is to choose the right scale N for each pixel disparity so that at that scale its SSD
value is a minimum of all the scales. That is, if )},({min xnssdN

n
= , then d(x)=d(N,x).
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Figure 4 Disparity at three scales
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Figure 5 SSD at three scales

One of the big problems of SSD matching is its noise characteristics. Figure 6(a)
shows the computational result using above method. It can be seen that the disparity
value at the right end, i.e. around pixel 120 is not very good. This is the general case
when the same program is tested with some other more complicated image pairs, which
show worse results at some points. In some cases, for example, the points at the border
of the image may not have matches, or images corrupted with noise give rise to unstable
fluctuating results. Thus noise reduction is needed.

The noise problem can be dealt with using one of two possible methods, both of
which use an additional matching constraint to remove the points with higher SSD value
than a threshold. Hard thresholding and soft thresholding [18] are employed in the two
methods, respectively. The standard deviation is adopted as a soft threshold in this
paper.

Figure 6(b) gives the computational results using soft thresholding, which shows
sharp edges and stable disparity values.
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Figure 6 Computed disparity, (a) without threshold, (b) soft threshold

4 Experimental Results with Images

For the initial test, the commonly used random dot stereograms [19] are constructed.
Figure 7 shows the synthesised ‘Squares’ images of size 128*128. The central two
squares are right shifted by 4 and 8 pixels, respectively, between the two images.

The image matching is performed along the theoretical epipolar lines of the images.
The disparity map and the depth map for Squares are given in Figure 8.

Dot1

20 40 60 80 100 120

20

40

60

80

100

120

Dot2

20 40 60 80 100 120

20

40

60

80

100

120

Figure 7 Stereo pair: Squares

        
Figure 8 Disparity map and depth map: Squares
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To increase the complexity of the image features, another pair of random dot
stereograms, Random Square showed in Figure 9 , is tested. In contrast with the Squares
images, the pixels in Random Squares are random values between 0 and 1.  In Figure
10, the left figure gives the ground truth disparity map and right shows the
computational results using the above method.

             
Figure 9 Stereo pair 2: Random Squares

      
Figure 10 A comparison of the ground truth data and computed data (I)

Left: ground truth disparity map, Right: disparity map using wavelets

Computation with real image pairs is also tested. One imagery popularly used is
shown in Figure 11, which can be downloaded from the web site,
http://www.research.microsoft.com/~szeleski/stereo. The ground truth and estimated
disparity maps using dyadic wavelet transform are displayed in Figure 12.

Figure 11 Stereo pair 3: Tsukuba images



121

Figure 12 A comparison of the ground truth data and computed data (II)
Left: ground truth disparity, right: estimated disparity result using wavelets

Another pair of real images was taken in the authors’ laboratory and used in [20] is
shown in Figure 13, the right figure of which gives the computed disparity map.

       

Figure 13 Real stereo pairs 4 and the disparity map

5 Conclusion and Future Work

This paper has presented a wavelet approach to computing disparity maps. It is of vital
importance to apply shift-invariant wavelet transforms when using wavelet techniques
for stereo matching. As an initial approach to the application of wavelet transforms to
stereo matching, the dyadic wavelet transform was used to develop a matching
algorithm. The sum of squared difference is defined based on the values of dyadic
wavelet transform coefficients. The experimental results give rise to promising disparity
maps. This demonstrates the viability of applying the wavelet transform approach to
stereo matching.

However, a better compromise between the algorithmic efficiency and information
redundancy could be made because the translation parameter of the dyadic wavelet
transform remains continuous. Further investigation of other wavelet transform
techniques such as wavelet zero-crossings and dual-tree complex wavelet transforms
applied to the matching problem is therefore being carried out. And the comparison of
wavelet-based algorithms with standard matching algorithms will be made in the future
work.
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