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Abstract

An approach is presented to automatically segment and label a continuous
observation sequence of hand gestures for a complete unsupervised model
acquisition. The method is based on the assumption that gestures can be
viewed as repetitive sequences of atomic components, similar to phonemes in
speech, starting and ending in a rest position and governed by a high level
structure controlling the temporal sequence. It is shown that the generat-
ing processes for the atomic components and derived gesture models can be
described by a mixture of Gaussian in their respective component and ges-
ture space. Mixture components modelling atomic components and gestures
respectively are determined using a standard EM approach, while the deter-
mination of the number of mixture components and therefore the number of
atomic components and gestures is based on an information criterion, the
Minimum Description Length (MDL).

1 Introduction

Natural gestures are expressive body motions with underlying spatial and in particular
temporal structure. The temporal structure of gestures can be modelled as stochastic
processes under which salient phases are modelled as states and prior knowledge on
both state distributions and observation covariances is learned from training examples
[3, 13, 16, 8, 17]. However, the collection of training examples as well as the determi-
nation of states requires temporal segmentation and alignment of gestures. This task is
ill-conditioned due to measurement noise, non-linear temporal scaling based on varia-
tions in speed and most notably human variation in performing of gesture. As a result
the segmentation in gesture recognition typically involves manual intervention and hand
labelling of image sequences.

This paper presents a method to automatically segment and cluster continuous obser-
vation sequences of natural gestures for a complete unsupervised acquisition of gesture
models, using only contextual information derived from the observation sequence itself.
Our work is motivated by recent work in the field of Natural Gestures that identified two
basic gesture types. Gestures based on two movement phases, away from a rest position
into gesture space and back to the rest position and gestures based on three movement
phases, away from the rest position into gesture space (preparation), followed by a small
movement with hold (stroke) and back to the rest position (retraction) [9]. Our approach
makes the assumption that gestures can be viewed as a recurrent sequence of atomic
components, similar to phonemes in speech, starting and ending in rest positions and
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governed by a high level structure controlling the temporal sequence. The extraction of
gestures consequently involves in a first step the segmentation of the complete observation
sequence and the extraction of atomic components and in a second step the identification
of rest positions and the sequence of enclosed components. We show that atomic compo-
nents and derived gestures once normalised and projected into their respective component
and gesture space form clusters. Both distributions can be described by mixtures of Gaus-
sian, where each mixture component models a different atomic component or gesture
respectively. Consequently, the determination of atomic components and gesture models
requires the determination of an optimal number of mixture components, known as the
problem of model order selection, and the estimation of the model parameters.

Maximum likelihood methods such as k-means [6] or Expectation-Maximisation (EM)
[5] provide effective tools for the determination of mixture components. However, the re-
sulting mixture models depend on the a priori knowledge of the number of mixtures. The
model order can be determined using constructive algorithms that employ cross valida-
tion techniques for model training [10]. However the disadvantage of such methods is
that they require a validation set, which is often not available. Alternative approaches to
determine the number of clusters are based on information criteria, such as A Information
Criterion (AIC) [1], Bayesian Information Criterion (BIC) [14] and Minimum Descrip-
tion Length (MDL) [11]. In the following sections we show how MDL can be used to
automatically segment the components within gesture space into clusters that correspond
to atomic gestures, without any a priori knowledge on the number of atomic components
present. We extract high level knowledge on gestures based on the assumption that ges-
tures can be described as sequence of atomic components, starting and ending in a rest
position. Rest positions as well as the number of gesture models present in an observation
sequence are identified using MDL.

The rest of this paper is organised as follows. Section 2 describes the temporal seg-
mentation of gestures and their partitioning into atomic components. Section 3 describes
the component space representation. Section 4 shows how to use MDL for the automatic
clustering of atomic components in component space. Section 5 shows how to derive
high level knowledge on gesture models. Experiments on data driven clustering for ges-
ture model acquisition are described in Section 6 and the paper concludes in Section 7.

Figure 1: Deictic gestures: pointing left” (top row), pointing right™ (bottom row)

2 Temporal Segmentation

Temporal segmentation partitions a continuous observation sequence into plausible atomic
components. Our approach is motivated by recent work in the field of Natural Gestures
[9] that has identified five basic hand gesture types, iconic, metaphoric, cohesive, deic-
tic and beat gestures. All gestures have their temporal signature in common. Gestures
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Figure 2: Metaphoric gestures: he bent a tree™ (top row), “’there was a big explosion” (bottom
row)

Figure 3: Communicative gestures: waving high” (top row), ”waving low” (middle row) and
”’please sit down” (bottom row)

are typically embedded by the hands being in a rest position and can be divided into ei-
ther bi-phasic or tri-phasic gestures. Beat and deictic gestures are examples for bi-phasic
gestures. They have just two movement phases, away from the rest position into gesture
space and back again, while iconic metaphoric and cohesive gestures have three, prepa-
ration, stroke and retraction. They are executed by transitioning from a rest position into
gesture space (preparation), this is followed by a small movement with hold (stroke) and a
movement back to the rest position (retraction). Examples are shown in Figure 1, Figure 2
and Figure 3.

The complete gesture sequence, is recorded as a continuous sequence of 2D vertices,
containing the z and y positions of a person’s moving hand in an image plane. Segmen-
tation is performed in two steps. In a first step, the complete observation sequence is
analysed for segments where the velocity drops below a pre-set threshold to identify rest
positions and pause positions that typically occur in bi-phasic gestures between transition
into and out of gesture space and in tri-phasic gestures between stroke and retraction. A
second step analyses the segments for discontinuities in orientation to recover strokes.
We adopt a method based on Asada and Brady’s Curvature Primal Sketch [2], depicted in
Figure 4.

3 Component Space Representation

Each atomic component extracted from the trajectory of a person’s moving hand, consists
of ¢ 2D vertices v, = [z1, Y1, T2,Y2, ---, Zc, Y] With each component having a different
number of vertices ¢. Clustering algorithms, however work on d-dimensional sets of N
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(a)

Figure 4: Detecting discontinuities in gesture trajectories. The orientation of a two dimen-
sional hand trajectory f(t) is convoluted with the first IV, and second derivative N, of a Gaus-
sian N, (t) = (1/(V2ra)exp(—t>/25°) at different temporal scales & = {Gmin - - - Omaz}. The
filter responses are analysed for characteristic maxima and zero crossings. Only discontinuities
consistent over a large scale are registered, thus taking care of noise on different levels. a) Example
trajectory containing a curvature discontinuity A®. b) The trajectory in orientation space, relating
the orientation of the curve to the arc length along the curve. c) Filter response N, = f of the
orientation of the trajectory f(¢) convoluted with the first derivative of a Gaussian N, (t). d) Filter
response N x f of the orientation of the trajectory f(t) convoluted with the second derivative of
a Gaussian N, (t). As shown in d) corners give rise to a pair of peaks with a separation d. ~ 2o
and height h, ~ |<I>|/(\/E02). Note, d. is linearly dependent on the scale constant o and mono-
tonically decreases with o, which provides a strong clue for the detection of corners. Example of a
continuously recorded hand trajectory (middle). The recorded trajectory approximated by a spline
and segmented into 701 atomic components (right).

input vectors Z = [z1, 23, ...,2n5]. This requires to transform the atomic components
into a normalised representation, termed “component space” (Figure 6). The transforma-
tion consists of three steps. First, the number of 2D vertices is normalised. The atomic
components are approximated by splines, interpolated into d vertices and stored as 2d-
dimensional vector z; = [x1, Y1, 22, Y2, ---, Zd, y4]. Second, each vector z; is concatenated
with a scale factor s; = (¢i—¢min)/(Cmaz — Cmin), the ratio of the original number of ver-
tices minus the minimal number and the maximal number minus the minimal number of
vertices to preserve information on the original length. Third, redundant dimensions are
removed using Principal Component Analysis (PCA). Looking at Figure 6 we can see that
atomic components projected into component space form clusters, which can be approx-
imated by a mixture of K Gaussian, defined by mixture coefficients Wy, = [wy, ..., wg]

and d-dimensional means and covariances Oy = [{1, .-, fk; 21, -, Dk)-
K

f(zi|Wk,Ok) = ZwkN(zz’;,uka k) 1)
k=1
Assuming each mixture component corresponds to an atomic behaviour allows us
to equate the determination of the mixture components with the determination of the
atomic components itself. There is a considerable amount of literature on the estimation
of mixture parameters and standard maximum likelihood methods such as k-means and
EM can be used to determine the values of Xy, ux and wy for a known model order
K. There are no methods to determine the number K of parameters directly, however
iterative procedures based on information criteria can be used as described in Section 4.
3.1 Removing Noise from Component Space
Not all components projected into atomic component space are part of meaningful ges-
tures and this reinforces the common criticism of k-means and related maximum likeli-
hood methods that they do not address the problem of noise and assign all input elements
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Figure 5: The average Euclidean distance calculated for all components to the nearest 15 neigh-
bours, approximated by a mixture of two Gaussian (left). The projection of the 3 largest Principal
Components of each atomic component, classified as feature (light colour) or clutter (dark colour)

(right).

to one particular class. Consequently we filter the distribution based on an approach
similar to that of Bayers and Raftery [12]. We assume that features and clutter can be
described by two superimposed random processes and approximate the distribution of the
distance dy, from a randomly chosen sample to it’s k;;, nearest neighbours by a mixture of
two Gaussian defined by model parameters w and © 4 = [A1, A2, 01, 032]:

f(dk|w7 G)d) = wN(dlw/\lJUI) + (1 - w)N(dk7/\2702) (2)

where A1 and A» are the average distances of a component to its kg, nearest neigh-
bours, o4 and o the corresponding variances and w and (1 — w) the mixture probabilities
for feature and noise respectively. The mixture parameters are estimated using an EM
algorithm and the components (see Figure 5) are filtered by applying the following pro-
cedure:

1. For K randomly chosen components
(a) Calculate the average Euclidean distance to its &, nearest neighbours
(b) Estimate the model parameters [w, A1, A2, 01, 03] using EM [5]

2. Classify each component according to whether the average distance to it’s k;;, near-
est neighbours has a higher probability under the feature or clutter.

An example for this procedure is shown in Figure 5 . Using the components extracted
from a sequence, as illustrated in Figure 4, we calculate the average Euclidean distance for
all components to the nearest 15 neighbours and approximate the resulting distribution by
a mixture of 2 Gaussian as seen in Figure 5 (left). Clutter is represented by the distribution
with the largest variance and all atomic components whose average distance to it’s k¢,
nearest neighbours falls within this distribution is classified as noise.

4 Automatic Model Order Selection

The density distribution in component space can be described by a mixture of Gaussian,
where each mixture component, k£, models a different atomic component. Consequently,
the determination of atomic components requires the determination of an optimum num-
ber of unknown clusters K, known as the problem of model order selection, and the
estimation of the model parameters Wk and O k.

The problem of model order selection has been widely studied in the literature (see
[4] for a review). Heuristic methods have been proposed by Akaike [1], Schwarz [14] and
Rissanen [11], who respectively proposed (AIC) A Information Criterion, (BIC) Bayesian
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Information Criterion and (MDL) Minimum Description Length. These methods are
heuristic in the sense that they do not minimise an error function between the estimated
and the true model order. Instead these methods define various information criteria that
only depend on the unknown model order K, which is defined as minimising value for
the respective criterion. One of the most popular criteria, the information criterion of
Rissanen, MDL, is defined as

MDL(K) = —In[L(Z|Wk, Ok)] + %Mln(N) 3)

MDL is obtained from information-theoretic considerations, and the model order is
defined as the model that minimises the description length, i.e. the model that encodes the
vector of observations in the most efficient way [7]. The first term —In[L(Z|Wk, ©Ok)],
the maximised mixture likelihood of P(Z|Wk, © ), measures the systems entropy and
can be seen according to Shannon’s Information Theorem as a measure for the number
of bits needed to encode the observations Z = [z, 22, ...z, With respect to the model
parameters Wy and O i

N
P(Z|Wk,0k) = [[ f(zilWk, Ox) 4)

i=1

The second term, 1 Min (V) measures the additional number of bits needed to encode
the model parameters and serves as penalty for models that are too complex. M describes
the number of free parameters and is given for a Gaussian mixture by M = 2dK +(K —1)
for (K-1) adjustable weights due to the constraint 3, wy = 1 and 2d parameters for d
dimensional means and diagonal covariance matrixes.

The optimal number of clusters and therefore number of atomic components can be
determined by applying the following iterative procedure:

1. Forall K, {Kin < K < Kpgo}
(a) Maximise the likelihood L(Z|W}, ©) using the k-means [6] or EM [5].
(b) Calculate the value of MDL (k) according to Egn. (3) and Eqn. (4)

2. Select the model parameters {W, © } for the minimising value of MDL(k).

rrrrr

o} MDL(K)
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Figure 6: The Minimum Description Length MDL (k) calculated for all cluster configuration [10 <
k < 45], with global minimum determined for 23 clusters (left). Component space segmented into
23 clusters: The projection of the 3 largest Principle Components of each atomic component (right).

An example is given in Figure 6. The Minimum Description Length MDL (k) is cal-
culated for all cluster configurations with [10 < k < 45] clusters, extracted from the
observation sequence shown in Figure 4 (right). A global minimum and therefore op-
timal number of clusters can be determined for k=23 clusters, consequently segmenting
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the projection of the atomic components in component space into 23 clusters as shown
in Figure 6 (right). The corresponding trajectory segments are shown in Figure 7, small
squares at the end of each trajectory indicate the direction of movement.

1'2\3\4( ~ 7/
‘riNCe iy
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Figure 7: The overlaid trajectory segments corresponding to the 23 extracted clusters.

5 Extracting High Level Knowledge

We assume that gestures are repetitive sequence of atomic components starting and ending
in a rest position and are governed by a high level structure controlling their temporal se-
quence. Consequently the extraction of gestures involves in a first step the determination
of rest positions and in a second step the enclosed sequence of atomic components.

Figure 8: Extracting Rest Positions. Extracted areas with little or no hand motion (left). The
distribution approximated by a mixture of Gaussian with 5 mixture components determined using
MDL (middle). Probabilities for the rest positions in logarithmic display (right).

Rest positions are defined as areas where the hands undergo little or no motion.
We identify rest positions by analysing the complete observation sequence for segments
where the velocity drops below a pre-set threshold as shown in Figure 8(left). The corre-
sponding [z, y] co-ordinates are stored and the resulting distribution is approximated by
a mixture of Gaussian, as shown in Figure 8(middle). Mixture components are estimated
using the EM algorithm and the number of mixtures determined using the MDL frame-
work introduced in the previous section. This is equally true for pause positions, that
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typically occur between transitions into and out of gesture space, however hands remain
longer in rest positions than in a pause position and this results in higher probabilities,
as can be seen in Figure 8(right). In real life scenarios we can encounter multiple rest
positions and people can change in between them. For simplicity we assume there is only
one rest position and consequently select the cluster with the highest probability.
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Figure 9: Atomic Components: The mean trajectories corresponding to the 23 extracted clusters,
labelled according to whether they start or end in a rest position.

In a second step atomic components were identified that start or stop in a rest posi-
tion. The mean trajectory for all components belonging to a particular class is computed
and a component defined to start or stop in a rest position in case the first [z1,y1] or
last [zn, yn] co-ordinate tuple is within 3 standard deviations from the rest positions
mean position. The mean trajectories are shown in Figure 9. The complete observation
sequence is then analysed for components that start and stop in a rest position and the cor-
responding component identifier of the enclosed sequence of atomic components stored.
Sequences containing components that were previously classified as clutter are discarded.
The derived gesture models and the atomic components they consist of are shown in Fig-
ure 10. The labels next to each atomic component indicate the corresponding component
identifier, labels at the bottom left indicate the gesture model identifier whereas labels
at the top left indicate the number of extracted sequences corresponding to each gesture
model.

5.1 Determining the Number of Gesture M odels

Looking at components [6,23],[7,8,12],[9,18],[10,16] in Figure 9 we can see a general
tendency of MDL to overestimate the total number of atomic components. This results in
identical gestures being described by multiple models containing different, however simi-
lar atomic components as can be seen in Figure 10 for models [2,7,11,12,13], [3,9] ,[4,5].
To reduce the number of models, we take the complete observation sequence, concatenate
consecutive trajectory segments corresponding to the extracted gesture models, approxi-
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Figure 10: The 13 extracted gesture models depicted by their atomic components. The small
numbers in the lower left indicate the model identifier and the numbers in the upper left indicate the
number of times each particular sequence has been seen.

mate the concatenated components with splines and interpolate them into 2d-dimensional
vectors z; = [£1,¥1,Z2,Y2, ..., £d, Ya). The corresponding gesture model identifiers are
stored and the resulting distribution is approximated by a mixture of Gaussian. Clusters
are extracted using k-means and their number determined using the already introduced
MDL. Models corresponding to the model identifier in each of the extracted cluster are
grouped together to one model, thus reducing the total number of models, as seen in
Fi .

gure 11 e

2 7

o

x*‘ 9 26
g 3
Figure 11: Reducing the number of gestures. All trajectory segments corresponding to the ex-
tracted gesture models projected into gesture space and re-clustered using k-means, grouping mod-
els [4,5] and [2,7,11,12,13] together.

6 Experiments

To evaluate our approach, we recorded a participant performing 7 gestures. The record-
ing included deictic gestures such as ”’pointing left” and ’pointing right” , metaphoric
gestures such as ’he bent a tree” and ’there was a big explosion” and communicative

gestures such “waving high” , ”waving low and “please sit down” . Examples are
shown in Figure 1, Figure 2 and Figure 3.
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A time limit of 15 minutes was set and each gesture was approximately performed
30 times in arbitrary order. Gestures were recorded with 15 frames per second and the
2D positions of the participants hands and the head extracted using a tracker developed
by Sherrah and Gong [15]. The 2-dimensional observation trajectory containing the [z,y]
position of the participant’s right hand was approximated by a spline and automatically
partitioned into 701 atomic components as shown in Figure 4. All atomic components
were transformed into a component space. Each component was interpolated into 20 2D
vertices, stored as 41-dimensional vector (20 2D vertices plus scale factor) and reduced
to 5 dimensions using PCA, still containing 95% of the original information. The aver-
age Euclidean distance for each component to its nearest 15 components was calculated.
The resulting distribution was approximated by a mixture of two Gaussian as seen in
Figure 5 and all components with higher probability under clutter than feature removed,
thus reducing the number of components by 118 to 583. The remaining components were
approximated by a mixture of Gaussian with [10 < k& < 45] mixture components, deter-
mined using a k-means clustering algorithm. The Minimum Description Length MDL(k)
was calculated for each configuration and a global minimum was determined for &k = 23
mixtures as shown in Figure 6 (left). Figure 6 (right) shows the projection of the largest 3
principal components of each atomic component segmented into 23 clusters and Figure 7
shows the corresponding trajectory segments. The small numbers next to each diagram
indicate the mixture identifier with the small squares at the end of each trajectory, indi-
cating the direction of movement. Looking at components [6,23], [7,8,12], [9,18], and
[10,16] we can see a general tendency of MDL to overestimate the number of atomic
components. They are similar however were split into different components.

Figure 8 shows the extracted rest and pause positions. The complete observation
sequence was analysed for sequences where the velocity dropped below 1/20th of the
maximal velocity. The corresponding [z, y] co-ordinates were extracted and the resulting
distribution approximated by a mixture of Gaussian. Five mixture components were de-
termined using MDL and the mixture with the highest probability chosen as rest position.
Figure 9 shows the mean trajectories corresponding to each extracted atomic component.
The small numbers in the lower left indicate the component identifier and the letter ’S’
or ’E’ indicate whether a component starts or ends in a rest position. The extracted ges-
ture models can be seen in Figure 10. The small numbers in the lower left indicate the
model identifier, the numbers in the upper left indicate the number of times each partic-
ular sequence has been seen and the number next to each of the trajectory segments the
atomic component identifiers. A total of 13 gesture models were extracted corresponding
to the 7 gestures due to a tendency of MDL to overestimate the number of atomic com-
ponents which can be seen in models [2,7,11,12,13], [3,9] and [4,5]. They are identical
however consist of different atomic components. For example, gesture [2] consists of
components [6] and [8], while gesture [11] consists of components [23] and [7] similarly
gesture [3] and [9] consist of components [20,13,19] and components [5,19] respectively.
Some of the components are shared by two or more gestures. The atomic component
[22] is shared by the metaphoric gestures [4,5] "he bent a tree” and the communicative
gesture [10] "waving high” or component [19], is shared between the communicative ges-
tures [3,9] "please sit down” and the metaphoric gestures [4,5] "he bent a tree” and [6]
“there was a big explosion”, thus demonstrating the functionality of atomic components
as building blocks of gestures.

To reduce the final number of gestures all trajectory segments belonging to each of
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the 13 extracted gesture models were concatenated and normalised into a 40 dimensional
vector. The corresponding model identifiers were stored and the resulting distribution
was approximated by a mixture of Gaussian. Eight mixture components were determined
using MDL, grouping gesture models [2,7,11,12,13] and [4,5] together as can be seen in
Figure 11. Thus reducing the total amount of gestures to 8, containing the models [1],
[2,7,11,12,13], [3], [4.5]. [6], [8], [9] and [10].

7 Summary and Conclusions

We presented a systematic approach to automatically segment and label a continuous ob-
servation sequence of hand gestures for a complete unsupervised model acquisition. We
assumed that gestures can be viewed as a repetitive sequence of atomic components that
can be modelled by a mixture of Gaussian in a component space. Mixture components
were determined using k-means clustering and the number of components was automat-
ically determined using the MDL criterion. Experiments were performed on a training
sequence containing 7 different gestures. A first low level analysis slightly overestimated
the number of models and extracted 13 partly identical gestures due to a tendency of MDL
to overestimate the number of atomic components. In a second step, we analysed the ges-
tures on a high level and were able to reduce the number of models to 8. Visual inspection
shows that the extracted gestures model all 7 original gestures.
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