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Abstract

This paper proposes a new approach to rectification, a process whereby a stereo pair of
images is re-sampled so as to make imposing the two view geometric constraint sim-
ple. This is normally performed by applying a single linear transformation per image,
a method which has the drawback that some camera motions produce rectified images
which are heavily distorted or unbounded. More recent attempts have used nonlinear
transformations to allow any camera motion, but as a consequence distort images so that
matching features no longer look the same in both images. This work provides a hybrid
linear/nonlinear method that greatly reduces this problem, and simplifies the technique.
The technique also provides further improvements by selecting the rectifying transforma-
tion so as to minimise perspective effects between the images.

1 Introduction

Rectification is a process used to facilitate the analysis of a stereo pair of images by
making it simple to enforce the two view geometric constraint. For a pair of related
views the epipolar geometry provides a complete description of relative camera geometry.
Once the epipolar geometry has been determined it is possible to constrain the match for
a point in one image to lie on a line (the epipolar line) in the other image and vice-
versa. The process of rectification makes it very simple to impose this constraint by
making all matching epipolar lines coincident and parallel with an image axis. Many
stereo algorithms assume this simplified form because subsequent processing becomes
much easier if differences between matched points will be in one direction only.

In the past, stereo images were primarily rectified using optical techniques [11], but
more recently these have been replaced by software techniques. These model the ge-
ometry of optical projection by applying a single linear transformation to each image,
effectively rotating both cameras until the image planes are the same (see [4, 3] for a
small sample). Such techniques are often referred to as planar rectification. The advan-
tages of this linear approach are that it is mathematically simple, fast and preserves image
features such as straight lines.

Unfortunately, planar rectification is not general and if there is a large forward compo-
nent in the camera movement it may produce unbounded, large or badly warped images.
In the past this was not a problem because stereo vision was usually performed using
stereo rigs with near parallel cameras. However, recent advances in uncalibrated stereo
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Figure 1: The epipolar geometry

vision (e.g. [1, 5]), have focused more on hand held sequences in which forward move-
ment can frequently be present.

To deal with these restrictions, a cylindrical rectification technique was proposed in
[10] which used a separate transformation for each epipolar line. However, the technique
was complex, omitted many implementation details and worked largely in 3D. A later
work, [8] overcame most of these problems, by using the tools of oriented projective
geometry to perform a similar nonlinear rectification without using 3D.

In this work, a new general rectification technique is presented which further improves
on these techniques. Firstly, it uses existing matches between the images, e.g. those used
to calculate the epipolar geometry, to determine a rectification which minimises perspec-
tive distortion effects such as motion parallax between the images. Secondly, by using
the same nonlinear transformation for both images, it overcomes a problem with existing
general techniques where the application of different nonlinear transformations to each
image results in matching image features being warped differently in each image. Fi-
nally it also simplifies the approach of [8] and handles a number of other minor problems
overlooked by previous work such as sub pixel coordinates and infinite epipoles.

2 Preliminaries

Throughout this text, column vectors will be referred to with bold lower case letters, such
as �, and row vectors as transposed column vectors �� . Matrices will be represented
by an upper case letter e.g. �. Also, the notation � will be used to indicate equality of
vectors or matrices subject to multiplication by a non-zero scale factor. Priming will be
used to indicate quantities in the second image of a pair e.g. � �. Familiarity with basic
projective geometry and homogeneous notation will be assumed.

2.1 Epipolar Geometry

Figure 1 gives a pictorial representation of the central projection of a point � onto two
image regions I1 and I2 by two cameras with centres of projection � and � �. Given only
I2, all that can be determined about� from its image� � is that� must lie on the infinite
line defined by �� and � (the back projection of � �). As a direct consequence of this,
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Figure 2: Oriented epipolar geometry. Matching for the point M can be seen to be re-
stricted to a half epipolar line from the epipole. The point N illustrates that if the point
matches to the other half of the epipolar line in �� it must be behind ��.

given I1 as well, the matching projection of � i.e. � must lie on the projection of the
line � ���� � in I1.

The projection of� � ��� � is also known as an epipolar line and it can be seen that
all points ��

�
in �� will generate a pencil of epipolar lines in �� all containing the point

e. The point e is known as the epipole and is the image of the point � �, the only point
common to all back projected lines in ��.

If the same reasoning is followed through for the projection of the line � ��� �

in I2 then a matching epipolar line is found. Corresponding epipolar lines can be seen as
being the intersection of the epipolar plane with the images where the epipolar plane is
defined by the camera centres �, � � and the world point � . It can be seen that as �
varies the epipolar plane rotates around the baseline forming a pencil of epipolar planes
known as the epipolar pencil.

The epipolar geometry can be represented in the projective case by the fundamental
matrix. For details of this and how it may be estimated the reader is referred to any of the
numerous works on the subject, for example [7].

2.2 Oriented Projective Geometry

The concept of oriented projective geometry was first applied to the structure from motion
problem in [2], and refined in [6], where it was shown that it was possible to improve a
standard projective reconstruction by distinguishing between points in front of and behind
the camera. This was achieved using the constraint that all points known to be visible in
an image must be in front of the camera and expressed in the reconstruction of the 3D
points by enforcing the convention that points in front of the camera project 	� � 
�

to a positive scale factor 	 and those behind to a negative scale factor.

2.2.1 Orientation and Half Epipolar Lines

The notion of oriented projective geometry can also be applied to the epipolar geometry,
so that a point in one image matches to a half epipolar line in the other image instead of
a full epipolar line. This is illustrated in figure 2, where two world points, � and � on
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the same epipolar plane � are projected through the camera centres � and � � to form
matching image points ���� and ����. Since by definition the camera centres and
epipoles lie on the same line (the baseline) matches are restricted to being between points
on the same side of the base line. If the correspondences are not on the same side of the
baseline, the world point will be behind one of the cameras, as illustrated by the point
�. Note that as a consequence orientation of the epipolar geometry is only relevant to
matching if the epipole is within the image.

2.3 Homographies Compatible with a Fundamental Matrix

In this section, homographies � providing a planar projective mapping between image
points � � �

� will be considered i.e. �����. Such homographies can be used
to perform linear planar rectification by applying one to each image so as to make all
epipolar lines coincident and parallel (see [3]). However, because making epipolar lines
parallel can result in unbounded and badly warped images (see [3]), only homographies
which make epipolar lines coincident, but not necessarily parallel will be considered here.
These will be termed compatible homographies.

More concisely, given a fundamental matrix � for an image pairing and a match
between the images � � �

�, a compatible homography � will transfer � � so that the
resultant point ��� lies on the corresponding epipolar line �� �. The result of applying
this homography to all the points in one image will by definition be a pair of images
which have coincident epipolar lines and hence the same epipole, i.e. �� � � � and
���

� � ��. The set of homographies that are consistent with the geometry of a particular
image pairing can be obtained from the fundamental matrix as (see [3]):

� � ����
�
� � ��	� (1)

where 	 is an arbitrary 3 vector such that ��	� ��
. Note that this means there is a 3
parameter set of homographies that are compatible with the fundamental matrix. Since
compatible homographies can be considered as transforming points on a world plane be-
tween two different images these 3 parameters can be considered to represent a plane in
the scene. In image terms, these 3 extra parameters amount to defining a one dimensional
projective transformation that is applied along all the epipolar lines in an image.

Previous generalised rectification techniques made no attempt to select the free pa-
rameters 	 in equation 1 using any principled manner. In fact, different versions of these
free parameters were applied to each epipolar line in each image. Subsequently, distortion
arises which causes features to not look the same in both images for reasons other than
perspective or photometric effects. In this work, the use of a compatible homography re-
duces these problems because the same parameters are applied to matching epipolar lines.
However, it does not solve the problem, because different parameters are still applied to
each epipolar line.

One final point of note is that a compatible homography is a point to point mapping
and so must enforce orientation. This is because assuming the matches are correct, the
mapping must map between the correct half epipolar lines because no points will match
to incorrect half epipolar lines. Subsequently, there is no need to explicitly enforce orien-
tation as in the method of [8].
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3 General Rectification

The rectification method presented here comes in two stages. First, a compatible homog-
raphy is selected so as to minimise distortion due to perspective effects in some supplied
set of matches, and then applied to one image to make all matching epipolar lines coinci-
dent. Epipolar lines are then made parallel to an image axis by parameterisation of both
images with polar coordinates centred on the epipole. Note that, because a compatible
homography has been used on one image, the same nonlinear epipolar alignment process
can be used for both images and so problems of inconsistent image warping avoided.
On input, the rectification process expects to be provided with two rectangular images as
well as a fundamental matrix and a set of point matches such as those used to calculate
the fundamental matrix.

3.1 Determining a Compatible Homography

This section will address the method by which a compatible homography is obtained. This
method uses known matches and the fundamental matrix between the images to attempt
to find a compatible homography that minimises inter image distortion due to perspective
effects.

To do this, an attempt is made to find the homography compatible with the fundamen-
tal matrix � that transfers points��

�
in image two as close as possible to their matches in

image one��. This will find the best fitting plane for all the observed points (remember
a homography transfers points on a world plane between images), and so if the image is
then warped to make the found plane exhibit no parallax, perspective effects should be re-
duced. Assuming the point matches have been identified subject to a Gaussian distributed
error, the following least-squares criterion should be minimised for 
 points:
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where �� is Euclidean distance and the compatible homography is parameterised as in
equation 1. Replacing Euclidean distance with algebraic distance, and �� ��

�
� with � ,

the result is two linear equations � � ��� �� in terms of 	 per point match���
�:
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where subscripts indicate the 
th item in a vector and 
� the 
th row of � . Stacking
these equations gives a linear system of the form �	 � � which can be solved using any
standard linear least-squares technique.

Whilst this linear algorithm is effective, it does come with the major problem that,
even if the matches conform to the epipolar geometry, they can still be incorrect because
the epipolar geometry only constrains matches to lie on a line. Consequently, some form
of robust solution must be found. One approach is to use a random sampling method
to minimise a robust Huber function � ��� of the residuals � (� is the robust standard
deviation), i.e:

� ��� �

�
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for 
 observations and a parameter space of dimension �, � � � for this case (see [9]
for full details). This can be achieved by taking � minimal samples (� � �

 in my
implementation) of 3 points and using them to find a solution 	�. The solution 	�, which
minimises the Huber function just outlined is then accepted as the best solution. Outliers
are rejected using a ��� confidence limit and the robust standard deviation � of the best
solution i.e. �� � �����. Finally, the calculation can be repeated using the linear method.

Even if no point matches are outlying, the robust approach is still advisable because
depth variation may mean that some points, although correctly matched will be so far off
the best fit plane they will skew the selected plane very badly. This might occur if there
is a very large amount of depth variation in an image or a very dominant plane. This is
based on the assumption that it is desirable to find the best fit plane in general that will
result in the most points matching well, and not to allow small insignificant image regions
to skew the fit.

3.2 Unbounded Images

Since a linear transformation is being used, it is possible for the compatible homography
to result in an unbounded image. This occurs in the extremely unlikely situation of the
epipole in first image being infinite, and the epipole in the second image being within
the image. In this case, the compatible homography will cause the epipole in the second
image to be mapped to infinity, causing an unbounded second image. Fortunately, such a
degeneracy is easily handled by swapping the images so that the homography maps points
from image one (infinite epipole) to image two (epipole in image).

Near this degeneracy, problems will also occur with large images. In order to deal with
this, the whole technique is modified by swapping the images the homography transfers
between so that points are transferred to the image with an epipole closest to the image
centre. For simplicity from this point onwards this swapping will be assumed and the
image which has the compatible homography applied to it will be considered to be image
two of the pair.

3.2.1 Applying to The Image

After determination, the compatible homography can be used to warp all points in the
second image to the first image plane as ���

�
, thus making all epipolar lines coincident,

giving both images the same epipole and orienting the epipolar geometry. The nonlin-
ear mapping of epipolar lines to the rectified image using polar coordinates will then be
exactly the same for both images.

3.3 Rectifying the images

After the compatible homography has been applied to one image, rectification can proceed
so as to make epipolar lines parallel with the x axis. This is achieved by parameterising
all image points in terms of polar coordinates centred on the epipole. Subsequently, each
rectified point is described by a y coordinate given by an associated polar angle �� �
� � �, and an x coordinate given by the distance of the rectified point from the epipole.

Recalling section 2.2, it should be noted that it is necessary to consider only positive
distances from the epipoles. Points at negative and positive distances do not belong to the
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same half epipolar line and so cannot match to the same half epipolar line in the other
image.

Before reparameterisation can proceed, it is first necessary to find the common bounds
of the rectified images in polar coordinates. This amounts to identifying the range of
epipolar lines common to both images as well as the maximum and minimum distance
of points from the epipole for both images. Once bounded, the rectified images can then
be built up line by line, with the distance between consecutive epipolar lines selected
individually so as to avoid pixel compression. The output image is then created as the
region that bounds the reparameterised image.

3.3.1 Finding the common region

Before finding the epipolar lines common to both images, it is best to first identify the
extreme epipolar lines for both images. If it is assumed that the input images are rectan-
gular, maximal epipolar lines are guaranteed to pass through the image corners and the
angle range spanned by the image is guaranteed to be at most � radians. Consequently,
the maximal corners can be found by determining the polar angle for each corner, and
selecting the maximum and minimum corners so that the total angle range is less than �
radians. Because of the restriction on the angle range, this can easily be achieved by first
normalising all the angles, so that one angle is 
 radians, and then using normal minimum
and maximum.

Since a compatible homography is available, all the image corners from image two
can be transferred to image one prior to finding the maximal corners. The common region
is then found as the second maximum and second minimum angle, such that the image
spans less than � radians. In effect, this means that given minimum angles 
,
 � and
maximum angles �,�� for both images, the second minimum �
 and maximum �� are
given by:

�
 �

�
����
� 
�� 	
� 
�	 � �

����
� 
�� 	
� 
�	 �� �
�� �

�
������ ��� 	�� ��	 � �

������ ��� 	�� ��	 �� �

This scheme will fail if an epipole is within an image, because in that case the relevant
image will cover an angle range of �� radians. Fortunately, this is an easily handled
anomaly. If the epipole is within one image, then minimum and maximum angles can
simply be set to the bounds of the other image. If the epipole is within both images, the
maximum and minimum angles can be set to �� and �.

3.3.2 Selecting the Epipolar Lines To Rectify

The next step is to build a table that will be used to transfer epipolar lines to and from
different scan lines in the rectified image. To do this, the process starts from one extreme
epipolar line, assigns it the rectified line � � 
 and associates it with the relevant angle.
Subsequent epipolar lines � � 
 are then found by taking a small angle step from the pre-
vious epipolar line so that there is no pixel compression within the region of the epipolar
line intersecting the image. The worst case pixel will always be situated at the furthest
distance from the epipole, i.e. the image edge opposite to the epipole. Figure 3 shows
how the angle step � can be calculated very simply as � � �����


�
�

�

�
where � can be

found by intersecting the epipolar line with the image.



660

e=c

li

li+1

θ

1

d

Figure 3: Determining the minimum distance between consecutive epipolar lines so as to
avoid pixel loss

Note that when this table is built up, each epipolar line from both images can be
unrectified and intersected with the image. From this, the maximum and minimum dis-
tance from the epipole can be found. Subsequently, the maximum and minimum distance
anywhere in both images can be found, and both output images completly bounded.

3.4 Rectifying and Unrectifying points

Unfortunately, avoiding pixel compression means it is necessary to rectify and unrectify
points using look-up tables. Each y coordinate of the rectified image can be associated
with an angle to enable unrectification, and vice-versa to enable rectification. However,
this makes it difficult to rectify any point and to unrectify points with a subpixel y coordi-
nate. In order to perform such operations, it is necessary to interpolate the look-up tables.
For this reason, it is best to represent unrectified epipolar lines by their polar angles and
interpolate using the angles.

3.5 Resampling the image

The image can be resampled very efficiently. For each line of the first image, the max-
imum and minimum distance of points from the epipoles can be unrectified, to give an
epipolar line segment. Pixel sized steps from one extent of this segment to the other can
be taken, and the output row of the rectified image can be built up. The same scheme can
be used for the other image, but with the different maximum and minimum distances for
the relevant image. Then, as the epipolar line in image one is being worked along in pixel
sized steps, it is transferred into image two using the compatible homography.

3.6 Infinite epipoles

Images with infinite epipoles will in fact not work with the above technique because all
distances will become infinite, and all angles will be the same. Fortunately, they can
easily be detected as an image with an effective angle range of 
 radians. Note that an
infinite epipole in the second image is irrelevant because the use of a compatible ho-
mography means that points from the second image are transferred into the first image.
Consequently, only an infinite epipole in the first image need be detected. For this case,
the rectification can simply apply the compatible homography and rotate both images so
that the epipole lies on the x axis. Although this is an exception case, it is extremely easy
to detect and handle.
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Figure 4: Forward movement image pair prior to rectification (left) and after (right)

Figure 5: Near parallel image pair prior to rectification (left) and after (right)

4 Examples

Figures 4 to 5 give a qualitative feel for the effects of rectification on some example im-
ages. For all the scenes, the fundamental matrix was first estimated techniques described
in [7].

Figure 4 illustrates the rectification of an image pair produced with a camera under-
going a mainly forward movement, the sort that would result in an unbounded image if
planar rectification were used. Notice how the epipole has been mapped to a line and how
this has resulted in disparities which are purely horizontal making this a usable rectifica-
tion. The other stereo pair in figure 5 was taken using a more conventional near parallel
camera movement and can be seen to have produced very little image distortion.

5 Conclusion

This work has presented a simple and fast algorithm for rectification of any stereo image
pair without the need for any calibration. Compared to previous techniques it has reduced
inter image distortion caused by the nonlinear rectification as well as providing a simpler
and more complete algorithm. It has also provided a means of minimising image dis-
tortion due to perspective effects if some pre-determined matches are provided (such as
might have been used to calculate the epipolar geometry). Overall, the result is a more
general technique that produces images which are easier to match.
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