View Reconstruction by Linear Combination of
Sample Views

Gabriele Peters & Christoph von der Malsburg
Institut fiir Neuroinformatik
Ruhr-Universitat Bochum
Universitatsstr. 150
D-44780 Bochum, Germany
gabi . pet er s@eur oi nf ormat i k. r uhr - uni - bochum de
http://ww. neuroi nformati k. ruhr-uni - bochum de/ i ni / PEOPLE/ gpet er s/

Abstract

Ullman and Basri [1] have shown theoretically, that a three-dimensional
object can be represented by a linear combination of two-dimensional images
of the object. But they have applied their calculations to artificially created
images only, like line drawings of cars. The application to images of real
objects turns out to be difficult, because a crucial point of their algorithm is
the knowlegde of correspondences in the sample views. In this article we
describe a biologically inspired system which automatically provides corre-
spondences between views of a three-dimensional object. This enables us
to apply Ullman and Basri’s linear combination approach to images of arbi-
trary, real objects. We give detailed formula of our linear combinations and
examples for reconstructed object views.

1 Introduction

In three-dimensional object recognition two-dimensional, viewer-centered object repre-
sentations gained acceptance in recent years, because of psychophysical and neurophys-
iological findings which support these models (for a survey see [2]). According to these
models humans and other primates can achieve viewpoint-invariant recognition of objects
by a system that can generalize unfamiliar views from a small number of stored sam-
ple views, which have been experienced previously. One well-known approach has been
proposed by Ullman and Basri [1] who proved the theoretical possibility of novel view
creation by linear combinations of sample views. As the application of their calculations
to images of real objects bears some difficulities, they applied their algorithm to artifi-
cially created images only, like line drawings of cars. Difficulties derive from the facts
that the nature of the used features has to be considered, correspondences in sample views
have to be known, and singularities have to be avoided by an appropriate choice of sample
views.

In the next sections we describe a biologically inspired system, which is able to deal
with these difficulties and which applies the linear combination approach to images of
real objects. We represent a single view of an arbitrary, three-dimensional object by a
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Figure 1: Viewing hemisphere with two sample views of two objects. Each crossing of
the grid stands for one view, thus the hemisphere consists of 100 x 25 views. The dot in
front marks view (0, 0).

graph which is labeled with Gabor wavelet responses described in section 2. Correspond-
ing points in sample views are obtained from a tracking algorithm, described in section
3. Given some graphs which represent single sample views of the object, we calculate
an interpolated graph of an unfamiliar view by calculating its vertex positions as linear
combinations of the vertex positions in the sample views (described in section 4), and
by interpolating its vertex features as weighted sums of the Gabor features in the sam-
ple views (described in section 5). To evaluate the quality of the interpolated graph, we
reconstruct a novel view from it and compare the resulting virtual view with one that is
reconstructed from a directly recorded graph (described in section 6). In addition, we are
able to generate a morphed, unfamiliar view directly from one original sample view and
the vertex positions of the interpolated graph, i.e., without utilizing interpolated features
(described in section 7).

2 Representation of Single Object Views

We recorded views of small toy objects at increments of 3.6° in both longitude and latitude
on the upper viewing sphere, resulting in 2500 views per object (see figure 1). Each view
of an object is represented by a graph which covers the object in the image. The vertices of
a graph are labeled with Gabor wavelet responses, which describe the local surroundings
of the vertex in the image (for an example see the graph for start view (2, 8) in figure 2).
For the Gabor transform we use a set of wavelets with 8 directions and 4 frequencies, thus
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for each vertex we obtain a vector with 32 complex entries. The vector is called a jet. The
graphs are generated automatically from the images: first, the object is separated from the
background by a segmentation algorithm described in [3] based on the gray level values
of the image. Then a grid graph is put on the resulting object segment.

3 Tracking of Object Features

For the calculation of the position of an object point in an unfamiliar view from the po-
sitions of the point in a small number of neighbouring sample views it is necessary to
have the exact correspondences of the point between the sample views. It has been shown
that the tracking of object features over a dense sequence of intervening images gives
much more precise correspondences than graph matching between the images directly.
This is also supported by human object recognition, where the temporal context which is
provided by tracking seems to be important to perceive three-dimensional form (see [4]).

We use a tracking procedure which provides subpixel precision. It is described in [5].
Given a sequence of a moving object and the pixel position of an object point in frame n,
the aim is to find the corresponding position of the point in frame n+1. We extract a Gabor
jet at the same pixel position in the frames n and n+-1. From a similarity function between
the two jets we can calculate the displacement vector between them, and thus estimate the
new position of the object point in frame n + 1. This process can be iterated to refine
the position. For each vertex of the graph of frame n the displacements are calculated for
frame n + 1. Then a graph is created with its vertices at the new corresponding positions
in frame n + 1, and the Gabor responses for the new vertices are extracted at the new
positions.

For each recorded view of an object we can track its representing graph to the right
and above it on the hemisphere (see figure 2). We stop tracking if the similarity between
the tracked graph of the current right (resp. upper) view and the original graph of the start
view drops below a preset threshold.

4 Linear Combination of Positions of Object Points

In this section we describe the calculation of the position of an object point in a novel view
from the corresponding positions of the point in two and three sample views. In the case
of interpolation of novel views from two sample views we use the start view and the right
view as samples (see figure 2), in the case of three sample views we use the start, the right
and the upper view. For our simulations we use a projection algorithm, which is proved
to be equivalent to Ullman and Basri’s linear combination approach. In the following our
calculations are described in their context.

Let o1, @2, @3, and ¢ denote the pan angles and A1, Ao, A3, and \ denote the tilt angles
of the start, right, upper, and novel view, respectively (see figure 3). The angles are given,
as well as the coordinates of the object point in the sample views. They are provided by
the tracking procedure and are denoted by (x4, y1) for the start view, (x4, y2) for the right
view, and (x3, y3) for the upper view. The coordinates (&, ¢) of the object point in the
unfamiliar view are to be found.
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Figure 2: Example of tracked graphs. The graph which represents view (2, 8) is tracked
to the view (12, 8) at the right and to the view (2, 14) above it.

4.1 Three Sample Views

If v1 and ¢ are not equal and not 180° apart, the xz-coordinate z is a linear combination
of z; and x5 only. The coefficients of this linear combination are simple functions in
@1, 02, and @. In detail: & = S22, aza; with

ap = —csc(pr1—p2) - sin(p2—@), 1)

az = csc(pr—p2) - sin(pr1—P). 2

The y-coordinate  is a linear combination of 1, y2, and ys, if, again, ¢, and 5 are
not equal and not 180° apart, if A\; and A3 are not equal, and if Ay is not zero (i.e. if the
start view is not positioned on the equator). All of these conditions can easily be met by
the choice of the positions of the sample views in relation to each other. The coefficients
of this linear combination are more complex, and they depend on 1, 2, $, A1, Az, and
A In detail: § = 327 by, with

b = cse(h—As) - csclor—a)
[cos(5) - sin(A) - (cos(xa) - sin(ia) — cot(N) - sin(Xs) - sin(p1)) +
sin(A) - sin() - (cos(As) - cos(ip2) = cos(pr) - cot(A) - sin(xa) )
cos(A) - sin(As) - sm(%—m)} , (3)

by = csc(A1) - esc(pa—p1) - sin(A) - sin(o1+@), (4)
by = esc(A1—A3) - csc(pr1—2) -
(003(5\) - sin(Ay) - sin(p1—@2) +

226



Figure 3: Pan and tilt angles. ¢ and X\ are measured for all views as depicted in this
scheme: 0° < ¢ < 360° and 0° < X\ < 90°.

cos(A1) - sin(\) - (sin(gpl +¢) — sin(gog—&—nﬁ))) . (5)

4.2 Two Sample Views

For two sample views the linear combination for the z-coordinate z is the same as for
three sample views.

The y-coordinate ¢ is a linear combination of x1, z2, and yy, if ¢1 and w5 are not
equal and not 180° apart and if A; is not 3 (i.e. if the start view is not positioned in the
north pole of the viewing hemisphere). Two of the coefficients depend on ¢+, @2, @, A1,
and \. The third of them depends on A, and X only. In detail: § = >"2_ b; - x; + b3 - 1
with

by = cos(pa—9) - csc(pr—epa) - sin(A) — cos(A) - cot(p1—2) - tan(X1), (6)
by = esc(pr—p2) - (005(5\) ~tan(A1) — cos(p1—¢) - sm(;\)) , )
bs = cos()) - sec(\). )]

5 Linear Combination of Features

Besides calculating the vertex positions of the interpolated graph as linear combination,
the features of the vertices have to be adapted to the interpolated positions, too. We
determine a jet of a vertex of the interpolated graph as a weighted sum of the jets of the
corresponding vertices in the sample views. The weights of the sum depend on the relative
position of the novel view with respect to the sample views. A smaller distance between
the novel view and a sample view leads to a stronger weight of the jets of the sample view
than a larger distance.

Let (z;,y;) be the position of the i-th sample view, (m,n) the position of the novel
view, and d; :=d ( ("), (Z)) the Euclidean metric for i = 1,..., N with N = number

of sample views (see figure 4).
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Figure 4: Weighting of feature vectors for three sample views. In this example c; is the
strongest weight, because the novel view (m, n) is closer to the sample view (x1, y1) than
to the sample views (z2, y2) and (x3, y3).

Let 7 (z,y) be a jet of view (z, y). Then following equation should hold true
N
J(m,n) = Zcij(xivyi) 9)
i=1

forall jets 7 (m, n), J (z;, y;) of corresponding vertices, i = 1,..., N with Zﬁil ¢ =1.

5.1 Three SampleViews

In the case of three sample views the weights ¢; are calculated according to following
three equations

c| = dgdg/(dﬂig + dqds + dgdg), (10)
Co = dldg/(dldg —+ d1d3 —+ dgdg), (11)
C3 — dldg/(dldQ + d1d3 + dgdg). (12)

5.2 Two Sample Views
For two sample views the weights are ¢; = da/(dy + d2) and co = dy/(dy + da).

6 Evaluatingthe Quality of an Interpolated Graph

Now we can assess the quality of an interpolated graph. For that purpose we reconstruct
the novel image from its original graph on the one hand, and from the interpolated graph
on the other. Using the reconstruction from the original graph derived directly from an
image as ground truth, we can assess the quality of the interpolation by comparing the re-
construction from the interpolated graph to the ground truth reconstruction (see figure 5).

We apply the algorithm described in [6] to reconstruct a gray level image from its Gabor
transform. For the comparison of both reconstructed images we calculate a relative error
E between them. If Z and Z denote the reconstruction images of the novel view from
the original and the interpolated graph, respectively, we regard Z as approximation of Z.

228



upper view (3, 14
w’i) h trackeé grapl

N

track

graph H
y iaw T NS
novel view e
(6,10 @ TTo---

9

-7 view (6, 10) with

start view (3, 7)
with original graph

track graph

interpolated graph

view (6, 10) with
origina graph

right view (11,
w?th trackegj gra?h

reconstructed
from inter- @
polated graph

reconstructed
from original

graph

Figure 5: Evaluation of an interpolated graph. Step 1) Calculate the interpolated graph of
the novel view (6, 10) from three sample views as described in sections 4 and 5. Step 2)
Reconstruct the novel view from the interpolated graph. The upper image on the right
is the resulting virtual view. Step 3) Reconstruct the novel view from its original graph
described in section 2 (ground truth). Step 4) Compare both reconstructed images by
calculating the relative error E.

The maximum error of approximating a pixel of Z by the corresponding pixel of Z is

€maz = Max(max(Z), max(Z)) — min(min(Z), min(Z)). Now we can calculate the
error E between Z and Z relative to e, 4.

TR R
E .= N oo Z |z — Zi (13)
=1
where z; and %;,i = 1,..., N, are the pixels of Z and Z with not both z; = 0 and

%; = 0, to exclude the background from the calculations.! We evaluate the quality of the
interpolated graphs by calculating the relative errors for a large set of reconstructed im-
ages depending on the distances between the sample views. For that purpose we partition
the viewing hemisphere of an object into areas of similar views, called view bubbles [4].
They are determined by tracking graphs along varying viewpoints as described in sec-
tion 3. This results in a partitioning of the viewing hemisphere into a smaller or larger
number of view bubbles, depending on the used tracking threshold. Figure 6 shows five
partitionings for object "Tom”. We use border views of a view bubble as sample views
to reconstruct views inside the view bubble. This is performed for each view bubble of
each of five different partitionings of the viewing hemisphere (depending on five different
tracking thresholds) resulting in a set of reconstruction errors for each partitioning. Thus,
we can specify a maximum and a mean reconstruction error for each partitioning, i.e. the
relative errors depend on the number of view bubbles. A logarithmic function seems to

1To be robust against slight translations during reconstruction we shift Z and Z against each other in a small
range and calculate F for all shifting positons. The final E is the minimum over all shifting positions.
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Object "Tom"

threshold 0.75 threshold 0.8 threshold 0.85 threshold 0.9 threshold 0.95
6 view bubbles 13 view bubbles 29 view bubbles 76 view bubbles 289 view bubbles

Figure 6: Partitioning of the Viewing Hemisphere for Five Different Tracking Thresholds.

be an appropriate description of the dependence of the mean reconstruction error on the
number of view bubbles used to cover the hemisphere (see figure 7).

E is a measure for the quality of our interpolated graph. It has been shown in many
studies, e.g., in [7,8], that a representation in form of a graph labeled with Gabor wavelet
responses, like our original graph, can be used for a robust object recognition. We claim
that the relative errors £ are small enough to justify the assumption of comparable recog-
nition capabilities of an interpolated graph, if the number of sample views is chosen ap-
propriately.

7 Morphing of Unfamiliar Views

By evaluating the quality of an interpolated graph in the way we described in the last
section we cannot distinguish the influence of the interpolated positions from the influence
of the interpolated features. But it is possible to estimate the quality of the interpolated
positions independently. For that purpose we generate a simple, morphed view from one
original object view and an interpolated graph. We warp the gray level values of the
original view by a triangulation of its original graph vertices and a linear mapping of
the resulting triangular patches to the corresponding positions given by the interpolated
graph. Figure 8 shows an example for a view morphed from three sample views.

8 Conclusions
The union of Ullman and Basri’s theory of linear combination of views on the one hand,
and a biologically inspired system which is known for its object representation and recog-

nition capabilities on the other hand leads to a tool which can represent any three-dimen-
sional object by only a few sample views. If the sample images of the object cover the
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Figure 7: Correlation Between Relative Reconstruction Errors and the Number of View
Bubbles. The fitting function for the mean errors of reconstruction has the same parame-
ters c = —0.009 and d = 0.076 for object "Tom” and the other tested object "dwarf”.

viewing sphere in an appropriate way a representation in form of a labeled graph as well
as a morphed version of any unfamiliar view can be generated.
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Figure 8: View Morphing. First, the vertex positions of the interpolated graph are cal-
culated from the start, upper, and right view as described in section 4. Then the original
start view and the interpolated positions are used to calculate the morphed version of the
unfamiliar view. It has to be compared with the original view shown in the upper image
on the right. The angle between the start and the right view is 39.6 degrees, between the
start and the upper view 25.2 degrees, and between the start and the morphed view about
20.3 degrees.
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