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Abstract 
 

This paper investigates the task of identifying frequently-used pathways from 
video sequences of natural outdoor scenes. Path models are adaptively learnt from the 
accumulation of trajectory data over many image frames. Labelled paths are used as an 
efficient means for compressing the trajectory data for logging purposes. In addition, the 
path models are used to predict the object’s location many timesteps ahead, and to aid 
the recognition of unusual behaviour identified as atypical object motion. 
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1 Introduction 
 

In this paper we investigate the task of learning the routes or paths taken by 
pedestrians walking through outdoor scenes. The motivation for this objective is three-
fold. Firstly, we require an efficient method to encode and annotate individual tracks to 
construct a log of movement patterns over long periods of time (e.g. weeks). Object 
trajectories will be assigned to one of only a small number of detected pathways, 
resulting in significant compression for the logged data. Secondly, the information can 
be used to support the tracking process giving the system the opportunity to predict 
forward many frames, based on the current location and direction. Finally, accumulating 
tracks over a long time period establishes a pattern of typical movements and this can 
support the recognition atypical or unusual movements.  

Routes and paths are distinguished in the following way: a route identifies a 
frequently used pathway followed by a pedestrian through the scene; a path identifies a 
scene-specific feature (e.g. a segment of pavement between to road sections). In most 
cases, a route is associated with a matched pair of entry and exit points to the image, i.e. 
where an object first appears and where it disappears from the field of view. This might 
normally be at the borders of the image, but can also occur at occlusion boundaries, 
from which the tracked object does not re-appear. The justification for making this 
distinction between routes and paths is that the raw input data is object-based, consisting 
of object trajectories extracted from image sequences. However, for the three tasks 
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identified above (labelling, prediction and atypicality) we wish to associate trajectories 
with scene features and hence we maintain two representations. 

The following section gives a brief overview of some of the problems of 
extracting routes and paths from image sequences and examines previous reported work 
for this task. The next section describes the models that will be generated for this 
research, and then a description of the implementation of the algorithms for building 
these models. Results are then presented for model building from image sequence taken 
from a campus site. 

 

2 Previous work 
 

To extract pedestrians routes requires a method that is able to cope with a wide 
range of inconsistent motions, often resulting from a variety of interaction: people 
avoiding each other at busy times; avoiding static objects in the pathway; or just the 
casual meandering of a lone pedestrian. The deviation from a straight-line is, in part, 
dependant on the width of the pathway. However, the trajectories can be further 
complicated by excursions outside the pathway (e.g. onto the grass). Figure 1 shows an 
example of a small number of trajectories (generated from the blob centroids) projected 
back into the image, and a motion histogram image [2] accumulated from a longer 
sequence of the same scene, showing regions which are cues for motion in the scene.  

   
Figure 1a. Sample trajectories plotted in image plane and b) motion histogram image.  

 
Fernyhough [3] built a database of object paths by accumulating the frequency of 

trajectory occurrences in the spatial domain. He derived image regions from the 
database using a classification proposed by Howarth and Buxton [5], dividing the space 
into leaf and composite regions, which can be used to represent areas of similar 
behaviours. 

Johnson et al [6] used a neural network to learn typical motions of pedestrians 
though a scene. Many trajectories were accumulated to form a distribution in the image 
plane that was represented by a set of prototype vectors. Vector quantisation was 
implemented using two competitive learning networks, the first to model the 
distribution of flow vectors, and the second to model the trajectory distributions. A layer 
of leaky neurons connects the two networks, and introduces a memory element into the 
network architecture. The model supports the detection of un-typical instantaneous 
motions for detecting atypical trajectories, but does not satisfy the requirements for 
prediction or provide a mechanism for labelling the trajectories. 
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Sumpter and Bulpitt [8] adopted Johnson’s methodology [6], adding feedback to 
the network to learn different patterns of activation. They then apply this model to 
predicting behaviours of a flock of penned domesticated animals (ducks) in response to 
a predator threat. 

Boyd et al [1] classified movement flow between (manually) segmented image 
regions using a graphical model, with links representing the movement between 
adjacent regions, using an analysis based on network tomography, intended for 
statistically modelling data packet flow in computer communication networks. The 
method avoids extracting trajectories, registering only the changing density estimates of 
objects between adjacent regions to model the flow patterns. As such, it also fails to 
meet the main requirements for labelling and prediction that we require. 

 

3 Scene Model 
 
We propose a spatial model for representing routes in the image. A route 

describes the entire trajectory of an object from the time it enters the scene to when it 
exits and can be described as a curve with specific start and end points. Each route is 
modelled with a central spline axis (a set of equi-distant nodes that form a polyline) that 
represents some average of the route, bounded by two extrema, that bound the variation 
in trajectories sampled for the route (see figure 2). A route has two terminator nodes 
(start and end) that typically correspond to entry/exit points or regions in the image. 

Specifically, each node i is characterized by: 
•  a 2D vector that represents the image coordinates of the node: xi=[xi, yi] 
• a weight factor wi that reflects the strength of the node, based on the number of 

times that it has been updated 
• a normal vector ni=[nxi, nyi], defined as the unit vector perpendicular to the 

local spline direction (defined by three consecutive nodes of the route) 
• a set of observations across the route (along the normal vector). We use the 

extremes of this set, the left li=[lxi, lyi] and the right ri=[rxi, ryi] which lie along the 
normal vector of the node. 

The advantages of such a model are that the routes are closely tied to specific 
scene features and can be used to support spatial reasoning. The spline provides a 
simple representation for the route that is computationally simple and can be 
dynamically updated for on-line learning. Using the extrema for quantifying the width 
emphasises the spatial bounds for the routes and can cope with asymmetries. 

 
 
 
 
 
 
 
 
 
 

Figure 2. Spline and extrema representation of a route 
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The route models are learnt from example trajectories extracted from an image 

sequence of object motion. Trajectories are grouped using a geometrical analysis that 
compares the separation distance between a trajectory and an evolving route description.  

A second level model derives a semantic description of scene components 
inferred from the routes based on paths. The paths have a similar geometric 
representation as the routes and are constructed by detecting junction regions where 
routes cross each other, or where sections of route lie closely parallel. We use a graph to 
represent the topology of the network of nodes (entry/exit points and junctions) for the 
paths. 

 

4 Implementation 
 

4.1 Route Learning 
 
Routes are learnt by grouping sets of geometrically adjacent trajectories and the 

route description is stored in a database. The following section describes how 
trajectories are selected for grouping, the criteria for matching a new trajectory to a 
route, updating of routes in the database, and finally, how routes are merged. 

A trajectory is derived from tracking an object across many frames extracted 
from an image sequence. It consists by a set of 2D coordinates corresponding to some 
specific point on the target, e.g. the centroid. To avoid learning with un-representative 
data, we eliminate short trajectories and trajectories of slowly moving objects whose 
direction changes frequently over short time periods.  

A valid and suitable trajectory is then resampled over the space to normalize the 
trajectories of high and low speed objects and to counter the effects of perspective. The 
resampling process also generates smoothed trajectories. Next, the trajectory is 
compared to all existing routes in the database, according to a defined distance measure 
between a trajectory and a route (see appendix). This distance measure computes the 
maximum distance between the trajectory and the route. After estimating the distance of 
the trajectory from all the routes, the trajectory is matched to the route with the 
minimum corresponding distance, under the condition that this distance is below a 
threshold T. If the trajectory does not match to any existing route, a new route is created 
in the database, initialised with the trajectory data. 

When a trajectory matches a route, the route must be updated with the new 
trajectory. The update task is performed in three steps: 

i) node updating: each node is updated using the trajectory closest point 

coordinates ( tx
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) and the weight factor w of the node: 
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In addition the weight factor w is incremented, the trajectory is checked if it is 
beyond the width distribution extremes and if so, the associated extreme become equal 
to the projection of the point on the node normal direction. 

ii) route extension: if there are trajectory points beyond the route 
terminator nodes, the route will be extended, using these points. 
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iii) es between the route nodes, 
the route is re sampled after updating, and the normal vectors are re-

 
Following updating, the updated route is compared with all the other routes in 

compares the two 
routes along their total length computing their minimum separation and are merged if 

 
The route merging is similar to route updating with a trajectory. First, the route 

elected as main and then this route is updating with the other 
(secondary route). Each node of the main route is updated with the closest node of the 
secondary route, but this time the weight factor (w2) and the width distribution of the 
secondary route must be considered. The extremes of the merged route are calculated 
from the combination of the extremes of both routes and the weight and the node 
position is calculated as follows: 

21
'

1 www +=    
( )

21

2211'
1

**

ww

xwxw
x

+
+

=  

At the terminators, if the secondary route has nodes that extend beyond the 
terminators of the main route, then the main route is extended. Finally, the main updated 
route is resampled. 

The above algorithm requires only two parameters: a) the resampling factor 
between the route nodes and b) the distance threshold T. 
 

4.2 Deriving semantic description from routes 
 

Although the route model allows us to distinguish different activities in the 
scene, it does not explicitly assign any semantics to the scene features. A semantic 
description of the scene would refer to paths and junctions. Paths and junctions can be 
derived by the set of the routes, by considering the following scenarios: 
i) Two or more routes are combined to create a path where they satisfy the route 

merging criteria (see section 4.1) over a sub-section of the route. A junction is 
formed at the location where the overlapped routes diverge. 

ii) When the routes cross each other, a junction is set at the cross area and each 
route is divided into two paths 

 

5 Results 
 

Figure 3a and 3b show three routes extracted from the trajectories of the 
sequence (table 1, routes 7, 5, 4). The routes were extracted from a video sequence 
(resolution 768x576) of 14 minutes, sampled at 2 frames per second, comprising 190 
trajectories. Threshold values used for the trajectory and route merging were 60 pixels 
and the resampling value was 40 pixels. As can be seen, the spline axis and bound axes 
give a compact representation of the pathways visible in the image and can be 
favourably compared to the MHI shown in figure 1b. 

Figure 3b contains the two principal routes leading down from the steps at the 
back of the scene onto the path in the foreground. Two separate routes are detected as a 
result of the bollard in the centre of the pathway, which causes a bifurcation of the 
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route. Figure 3c shows the splines for the 9 principal routes detected in this sequence. 
Table 1 identifies the main routes extracted from the image sequence, showing the 
number of nodes used to construct each path, the average number of trajectories that 
contributed to the route (weight), and finally the usage, which represents the probability 
of an object found on a particular path. Low weighted routes (i.e. 3, 6 and 7) could be 
also potentially be discarded, or may require more training data to determine if they 
represent frequently-used routes. Six routes with a very low frequency of use have been 
discarded from the routes extracted from the sequence. 

 
Route Nodes Weight Usage 
1 17 39.2 28.0% 
2 17 26.0 18.6% 
3 16 10.2 6.8% 
4 16 19.9 13.4% 
5 18 11.6 8.8% 
6 15 6.3 4.0% 
7 17 12.1 8.6% 
8 14 7.2 4.2% 
9 18 10.0 7.6% 

Table 1. Nine main routes extracted from sequence. 
 

 
(a)    (b)   (c) 

Figure 3. a) Route 7, b) routes 4 and 5, c) ‘mean’ trajectory of all major routes. 
 
Figure 4 shows the result of applying the route model to a set of 53 previously 

unseen trajectories. The trajectories shown in figure 4(a-c) have been recognised and 
classified from the learnt models. Figure 4d) indicate trajectories not matched with 
existing routes. It can be seen, for example for trajectories in the top left of figure 4d), 
where pedestrians have been tracked coming down the steps and turning right at the end 
of the pathway. This pathway was not represented in the original training data. The 
algorithm identifies a total 8 unknown routes from this set. 

Figure 5a shows the result of applying path detection to the route database. 
Junctions have been detected to indicate where routes cross or converge (unfilled 
circles). Entry and exit points are indicated by the crossed circles. The threshold 
distance of 40 pixels is used (derived from the re-sampling distance) for an image size 
of 768x576. Overlapped sections of routes are combined if they have two or more 
matched nodes. A pair of unfilled circles defines the common section of the two routes, 
and two junctions will 
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   (a)    (b) 

  
   (c)    (d) 
Figure 4. a-c) Classification of trajectories using route model. 
d) un-classified routes not recognised by the system. 

 
be formed as a result of merging this common section. In locations where the entry-exit 
points and junctions are found to be close, they are merged to construct the final 
network. Figure 5b shows the final results of these merging operations. 
 

 
Figure 5a. Detected junction (red circles) Figure 5b. Green rectangles indicate the  
and entry-exit points (blue circles).  merged junctions and entry-exits. 
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Figure 6. Hand constructed graph of the network shown in figure 5b. Leaf nodes 

(smaller circles) indicate entry-exit points, interior nodes (larger circles) are junctions. 
 
Finally, the grouping process that generates the path model provides a simple 

scheme to generate a probabilistic expectation of the route that will be taken by a 
pedestrian entering the scene at a particular location (if it is on a known route). The 
frequency usage statistics record the known destinations (exit points) for each entry. 
The table below indicates these probabilities from the trajectory and route data used to 
create figure 5b. So for some new object appearing at entry node 5, the probabilistic 
prediction is 0.73 that it will exit at node 8, and 0.27 that it will exit at node 6. 

 
Entry 
node 

Exit node probability 

 1 2 3 4 5 6 7 8 9 10 
1   1.0        
2      0.17 0.58 0.25   
3 1.0          
4          1.0 
5      0.27  0.73   
6  0.14   0.18    0.68  
7  1.0         
8  0.38   0.48     0.14 
9      1.0     
10 0.89 0.11 

 
Table 2. Probability of entry to exit node predictions estimated from frequency count of 
route usage. (Note: nodes are numbered clockwise, starting from top left corner.) 
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6 Conclusions 
 

This paper has demonstrated the practicality of building spatial models based on 
the analysis of trajectory data extracted from image sequences. The models have been 
shown to be valuable for economically encoding the route followed by an object in the 
scene, reducing the trajectory data down to a single label associated with each route. 
Although many surveillance tracking algorithms provide a local predictive step to aid 
the correspondence process in the next image frame, encoding the route and path data 
supports prediction over many time steps, and may be particularly useful for predicting 
across some types of occlusion in the scene (e.g. a parked vehicle). 

The exit node predictions generated from the routes and paths are restricted by 
the number of trajectories available for learning. More reliable statistics would require 
much longer training periods (i.e. more trajectories). In fact, it is likely that we would 
need to partition the route learning into different time periods (e.g. each hour), as the 
statistics are not stationary over time. However, the spatial model is simple to update, 
and on-line adaptation to new trajectories is a straight-forward task. 

We have not yet considered how that models will be used to identify atypical 
motions. Although the classification process presented in the results does classify 
trajectories that fall outside the current learnt state of the model, to determine a reliable 
classification of such an event really requires a longer time set.  The next step in this 
research will be to combine these models across multiple camera views. One of the 
guiding reasons for using the spatial model is that the features that are extracted are 
easily identified with scene features, and when the models are combined across many 
views, this characteristic will substantially ease the integration of information.  
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Appendix: Definitions of various distances 
 

Distance of a point from a route node. 
This is described by the following equation: 

( )tttd xrxlxx −−−−= ,min  

for trajectory coordinate xt and route node x with bounds l and r. 
Distance point from path. 
If the path had been represented by a simple curve (spline), the distance of a point from 
the path would have been just the Euclidean distance from the curve, e.g. the length of 
the line segment that connects the point with the curve and it is perpendicular to the 
curve. But because our definition of the path includes not only a curve, but an 
associated width function along the curve, we should specially define this distance: 
When the point is inside the path, his distance should be negative, and when it is outside 
positive and equal to the distance from the curve that is defined by the closest boundary, 
from the two boundary curves of the path. An approximation of this can be the 
minimum distance of the point from all the nodes of the path. 
Distance of a node from trajectory can be defined as the minimum distance of the 
node from all the points of the trajectory. 
Distance of trajectory from path: It can be defined as the maximum distance over all 
the distances of the trajectory points from the path. 
Distance between two nodes of two different paths: it should be defined as the 
distance between the two closest extremes of the two nodes. It can be negative, in the 
case that the nodes are overlapped. An approximation of this distance can be estimated 
by the following equation: 

( ) ( )1212212121 ,min,min xrxlxrxlxx −−−−−−−=d  

 
Distance of a node from another path is the minimum distance of the node from all 
the nodes of the other path. 
Distance between one path from another is the maximum distance over the distances 
of the nodes of the first path from the second path. Because this definition is not 
symmetrical, the distance can be calculated as the mean average of the two distances. 


