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Abstract

This paper tackles the problem of robust change detection in image sequences
from static cameras. Motion cues are detected using frame differencing with
an adaptive background estimation modelled by a mixture of Gaussians. Illu-
mination invariance and elimination or detection of shadows is achieved by
using a colour chromaticity representation of the image data. The combina-
tion of the colour- and intensity-based models results in some promising ap-
plications.

1    Introduction

Frame differencing is a technique widely used for the change detection in dynamic im-
ages. It compares each incoming frame with a background image and classifies those
pixels of significant variation into foreground. Therefore, the success of frame differ-
encing depends on the robust extraction of the background image. The background can
be modeled with a single adaptive Gaussian [8] and learnt during an initialization period
when the scene is empty. This method is eff icient only in less dynamic scenes but has
diff iculties with vacill ating backgrounds (e.g. swaying trees), background elements
moving, and fast ill umination changes (flood of sunlight, shadows or lights switched on).
A more robust method is to model the background by a mixture of adaptive Gaussians,
each distribution of which is updated using the Expectation-Maximization (EM) algo-
rithm [5] or a linear interpolation between the previous estimation and new observation
[7]. This method can interpret vacill ating backgrounds and background elements that are
moving later on. However, it still cannot readily follow fast ill umination changes, which
cause spurious “ foregrounds” and can lose targets in such cases. The reason is that the
existing applications use only intensity-based image representations.

To robustly identify a particular object surface under varying ill umination has re-
ceived considerable attention in colour invariance research [1][3][6]. For example, a
physics-based method has been proposed for shadow compensation in scenes ill umi-
nated by daylight [3]. The daylight is represented as a black body and the colour RGB

camera filters are assumed to be of infinitely narrow bandwidth. ABGBR )/()/(  is
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found only depending on surface reflection as the ill umination changes (A can be pre-
calculated from the daylight model and for the specific camera). Under the same as-
sumptions, Finlayson et al. [1] found that the log-chromaticity differences (LCDs),

)/ln( GR  and )/ln( GB , are independent of light intensity and there even exists a

weighted combination of LCDs which is independent of both light intensity and light
colour. There also exist adaptive schemes for colour-invariant detection of motion under
varying ill umination. Wren et al. [8] used the normalised components, U/Y and V/Y, of
a YUV colour space to remove shadows in a relatively static indoor scene. A single
adaptive Gaussian was used to model the background. Raja et al. [4] used the hue (H)
and saturation (S) of an HSI colour space to obtain a limited level of intensity invariance
in an indoor scene. A mixture of Gaussians was used to model a multi -coloured fore-
ground object, in which each Gaussian models one colour in the object.

In this paper, a mixture of adaptive Gaussians is used to model the possibly multiple
backgrounds at each pixel. The image representation used is the colour chromaticity,
rgb, which is robust to fast ill umination changes in an outdoor environment lit by sun-
light and shadowed by cloud. A reflection and diffusion model in such a scene is pre-
sented in Section 2. As a result, the motion detection is insensitive to large-scale ill umi-
nation changes. This algorithm differs from the existing applications of mixtures of
Gaussians in modelli ng the intensities of multi -backgrounds [5][7] or the colour hues of
a multi -coloured foreground [4].

2    Colour Fundamentals

An intensity image, ( )BGR fff ,,=F , taken with a colour camera is composed of sensor

responses as:

∫ == ),,()()()( BGRKdSIf KK λλλρλ                            (1)

where λ is wavelength, I is the ill umination, ρ is the reflectance of an object surface, and
SK is the camera sensitivity. Given a particular colour camera, the image intensity de-
pends only on the reflected light from the object surface:

)()()( λρλλ II ref =                                                      (2)

Therefore, the appearance of objects in an image is a result of interaction between
ill umination and reflectance. Either the emergence of an object or ill umination variation
can cause the image intensity to vary. To be able to identify and track the same object
surface (e.g. a background pixel) under varying ill umination, it is desirable to separate
the variation of the ill umination from that of the surface reflection.

In an outdoor environment, fast ill umination changes tend to occur at the regions
where shadows emerge or disappear. These shadows may be either large-scale (e.g.
those arising from a moving cloud) or small -scale (e.g. those arising from the objects
themselves). Here a shadow model derived from that in [2] has been used and is shown
in Fig. 1. There is only one ill uminant in the scene. Some of the light does not reach the
object because of a blocking object, thus creating a shadow region and a lit region on the
observed object. The shadow region is not entirely dark but is ill uminated by the reflec-
tion from each ambient object  j:
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)()()( ,, λρλλ jambientincidentjambient II =                                        (3)

(1) When the blocking object is opaque

For the lit region the reflected light from the object surface is:
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For the shadow region this becomes:

∑=
j

jambientincidentshadowref II )()()()( ,, λρλρλλ                                  (5)

The condition that makes the reflected lights from the lit and shadow regions have
the same spectral distribution is that:

Assumption 1: the chromatic average of the ambient objects in a scene is nearly
grey, i.e. it is relatively balanced in all visible wavelengths and:

∑ =
j

jambient αλρ )(,                                                      (6)

where α is independent of λ and may varies over space.
This assumption is realistic for the fast-moving cloud case, in which the only ill umi-

nant is the sunlight and both the blocking and ambient objects are grey (or white) clouds.
Under such an assumption, the reflected light, )(λrefI , from shadow and lit regions will

stay in proportion for a given object surface.

( )αα += 1,, litrefshadowref II                                               (7)

Ambient

Object 

Shadow LitLit

Light Source

Block

Ambient

Figure 1: A reflection and shadow model.
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(2) When the blocking object is semi-opaque

The reflected light from the lit object surface is the same as that in Eq. (4). The
shadow region is not only ill uminated by the reflection from the ambient objects but also
by the transmitted light from the blocking object:

)()()( λτλλ incidenttra II =                                                  (8)

where τ  is the transmittance of the blocking object.
For the shadow region the reflected light from the object surface is:
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On the basis of assumption 1, the condition that makes the reflected lights from the
lit and shadow regions have the same spectral distribution is that:

Assumption 2: the transmittance of the blocking object is relatively balanced in all
visible wavelengths, i.e.:

βλτ =)(                                                            (10)

where β is independent of λ ( 1≤β ) and may vary over space. This assumption is real-

istic for clouds that do not favour any specific visible wavelength. Under the assump-
tions 1 and 2, the reflected light, )(λrefI , from shadow and lit regions will stay in pro-

portion for a given object surface. We have:

( ) ( )ααβ ++= 1,, litrefshadowref II                                         (11)

Suppose that the camera sensitivity, )(λKS  in Eq. (1), is properly characteristised so

that no component of the colour image, F, is saturated. The relations shown in Eqs. (7)
and (11) lead to the image intensities, Kf , at all colour channels being in proportion, no

matter whether the object surface is directly lit or in shadow. The proportionality be-
tween RGB colour channels can be better represented using the normalised colour,

( )bgr fff ,,=f , each component of which is:

222
BGRKk fffff ++=                                                (12)

and will keep constant for a given object surface under varying ill umination. Therefore,
it is appropriate to model each f component using a Gaussian.

3    A Mixture of Colour Distributions

A mixture of N Gaussians has been used to model the potentially multiple backgrounds
at each pixel. The probabilit y of observing a value, tf , at a pixel is:

∑
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where G is the Gaussian probabilit y density function, ti,
�  and ti,

�
 are the (temporal)

mean vector and covariance matrix of the i-th distribution, respectively; ti,ω  is an esti-

mate of the weight, which reflects the likelihood that the distribution accounts for the
data. To simpli fy the computation, the rgb values are assumed to be independent and

then ti,

�
 can be approximately represented using the sum of its diagonal elements, 2

,tiσ .

We approximate the initial values of the temporal statistics using the spatial statistics
over a local region (n pixels) of the start frame:
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For the following frames, every new observation, tf , is checked against the N Gaus-

sian distributions. A match is defined if 1,1, −− <− titit cσ�f  ( 3≈c ). The parameters of

the matched distribution are updated as:
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where ϕ controls the updating rate, and the weight )(, xtiω  is increased. For the un-

matched j-th distribution ( ij ≠ ), tj,
�  and tj,σ  remain the same, but )(, xtjω  is de-

creased.
If none of the existing distributions matches the current pixel value, we have to either

create a new distribution, given less than N existing distributions, or replace the least
probable distribution with a new distribution. The distribution(s) with greatest weight is
(are) considered as the background model(s):

{ })(),( , xx tj
j

argminti ω=                                                 (16)

One advantage of the Gaussian mixture model is that when something is allowed to
become the background, the existing model of the previous background is still main-
tained. Therefore, if an object is stationary just long enough to become part of the back-
ground (e.g. a parked car) and then it moves, the distribution describing the previous
background can quickly explain the new object-free background.

4    Experimental Results

To assess the significance of the colour-invariant motion detection, we evaluated it at
both pixel and frame levels using a set of image sequences [9]. The image sequence
shown here was captured at a frame rate of 2Hz. Each frame was lossily compressed in
JPEG format and has a frame size of 384×288 pixels. This sequence adequately repre-
sents the abundant contexts of a daylit outdoor environment, with fast ill umination
changes, waving trees, shading of the tree canopies, highlights of specular reflection, as
well as pedestrians (refer to Fig. 2(b)).
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Figs. 2 and 3 show the results of the motion detection in two frames of the image se-
quence. The foreground pixels in the rgb results are those that go beyond [µ-3.5σ,
µ+3.5σ] of the most probable Gaussians. The foreground pixels in the RGB results arise
from a global threshold on the difference between the observation and the mean of the
most probable Gaussian. The thresholding level is selected so as to produce “blobs” of
similar sizes to those in the corresponding rgb results. In order to rule out isolated “ fore-
ground” pixels and fill gaps and holes in “ foreground” regions, a 3×7 closing (dilation-
erosion) operation has been applied to the binary image of detected “ foreground” pixels.

The grey-level intensity images here were obtained using 3222
BGR fffI ++= .

Fig. 2 (at frame 40) is an example comparing the RGB and rgb results under a minor
ill umination change. The foreground “blobs” extracted using rgb space are as coherent
as those using RGB space. Because of the different emphasis of image contexts for both
the colour spaces, the corresponding blobs in Figs. 2(a) and (c) may appear as different
shapes.

Fig. 3 (at frame 78) shows the RGB and rgb results under a major ill umination
change (refer to Fig. 5). In the RGB result, Fig. 3(a), a large area of the background is
detected as a huge foreground object, in which the ground-truth targets (pedestrians) are
submerged and lost. On the other hand, in the rgb result, Fig. 3(c), fast ill umination
changes give no additional “ foreground” blob and the “ground truth” targets are clearly
visible. Note the poor detection of some foreground blobs on the left of the frame is
caused by the stationary pedestrians that are being absorbed into the estimated “back-
ground” by the adaptive Gaussian model.

 
(a)                                                      (b)

 
(c)                                                      (d)

Figure 2: Motion detection at frame 40 with littl e ill umination change: the detected
blobs (left) and corresponding bounding boxes overlaid on the frame (right) using the
RGB (top) and rgb (bottom) spaces.
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The foreground pixels above are clustered into foreground “blobs” using a connected
component analysis. A minimum number of foreground pixels is set for each blob to rule
out small disturbances. Due to the varying sizes of possible foreground targets, e.g. from
a pedestrian to two intersecting trucks, the selection of the corresponding maximum
number is not so trivial as that of the minimum number and has not been used here in
order to differentiate the results of the intensity- and colour-based models. Each detected
“foreground” blob is labelled by a rectangular bounding box, as shown in Figs. 2(b)(d)
and 3(b)(d).

Table 1 shows the number of the detection errors in the same image sequence, from
frame 16 (skipping the learning period) to frame 100. Multiple objects are considered as
a single ground-truth object if they are grouped. Most of the undetected positives occur
when ground-truth objects are lost in large-scale ill umination changes. Most of the false
positives occur when a piece of background under ill umination changes is determined as
a “ foreground” object or occasionally the trees are waving. The colour-based model is
much more successful in dealing with ill umination changes.

Models Intensity-based Colour-based
No. of ground-truth objects 514
No. of undetected positives 159 2
No. of false positives 418 9

Table 1: The detection errors in an image sequence with fast ill umination changes.

 
(a)                                                     (b)

 
(c)                                                    (d)

Figure 3: Motion detection at frame 78 with a major ill umination change: the detected
blobs (left) and corresponding bounding boxes overlaid on the frame (right) using the
RGB (top) and rgb (bottom) spaces.
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5    Applications
Colour and intensity reflect the two distinct characteristics of an image. Motion detec-
tion based on only one aspect may fail i n some specific situations. We have combined

the motion detection results using the intensity, 3222
BGR fffI ++= , with those

using the rgb colour space. Such an (r,g,b,I) colour space is a complete representation of
the image information in that it can be invertibly transformed to and from the RGB col-
our space. However, this provides some promising applications that are not readily ob-
tained from RGB space only.

(1) Illumination change detection

An intensity-based model is sensitive to both foreground targets and ill umination
changes. A colour-based model responds only to targets. Therefore, a region can be de-
termined as being shadowed or re-lit i f the rgb components are stable but the I compo-
nent has a significant change. Suppose IS  and CS  are the binary sets of motion detec-

tion using intensity- and colour-based models, respectively, and a value of 1 represents
the detected foreground (0 for background). The regions where ill umination varies in-
clude a set of pixels, x, which satisfy:

))(()()(1 xxx BSSS CI ⊕⋅=                                              (17)

where ⊕  denotes the morphological dilation and B is the structuring element. The dila-
tion operation gives some tolerance of the different foreground profiles detected using
intensity- and colour-based models. The results of ill umination change detection are
shown in Fig. 4, where B is 3×7 sized.

Self-shadow detection can guide positioning and orientating of light sources in a
scene. In an environment with large-scale ill umination changes, the detection result can
guide when to use an intensity- or colour-based model.

(2) Switching between models

A colour-based model is vulnerable to failure when detecting targets in dim or satu-
rated regions, where the colour chromaticity is unreliable. In contrast, an intensity-based
model has a rather consistent performance, provided no drastic ill umination change oc-

 
(a)                                                       (b)

Figure 4: The regions with ill umination changes detected at frame 40 (a) and 78 (b),
respectively.
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curs. Therefore, the ratio of ill umination-varying regions to entire image, as well as the
average intensity (ill umination level), can be used as the indicator of when to use an in-
tensity- or colour-based model. For example, at sunset when the average intensity in a
scene is very low, the colour-based model is switched off and only the intensity-based
model keeps working. Only when the average intensity becomes higher than some
threshold, both models are applied to the image sequence simultaneously. The final de-
tection result is switched to that of the colour-based model if the level of ill umination
change is higher than some threshold; Otherwise it is switched to either the result of the
intensity-based model, that of the colour-based model, or the combination of both (see
data fusion in (3)).

Fig. 5 shows the normalised average intensity and the ratio of ill umination-varying
regions to entire image, through the previous image sequence. The normalised average
intensity is bounded between 0 (black) and 1 (white). For the ratio of ill umination-
varying regions, the peak at frame 0 arises from the learning errors of the initial model
parameters, and each of the other smaller peaks (with a magnitude of 0.05-0.15) corre-
sponds to a local ill umination change due to the flooding of sunlight; The highest peak
arises from a global ill umination change.

(3) Data fusion between models

The intensity-based model fails to detect targets with a similar intensity to back-
ground, and the colour-based model misses targets with a similar colour chromaticity to
the background. Therefore, both sets of the results can be combined to give better detec-
tion. One combination scheme favouring the colour-based model is to add some points
of IS , which is spatially close to CS , into CS . This can compensate for the loss of the

colour-based model due to the similarity of the colour chromaticity between targets and
background. This combination scheme can be configured into a decision tree shown as
in Fig. 6(a). The set of the fused foreground pixels, 2S , can be computed as:

))(()()()()(2 xxxxx BSSSSS CICC ⊕⋅⋅+=                                (18)

Fig. 6(b) shows the result of applying such a combination scheme to frame 40. It is
noted that the blob at the bottom is dilated to the same size as that for the intensity-based
result (Fig. 2(a)). The combination is favourable to the colour-based result in that the
regions with ill umination change (in the upper-left corner) are still excluded and the
right-most blob is as complete as that in the colour-based result (Fig. 2(c)).
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Figure 5: The normalised average intensity (thin line) and ratio of ill umination-
varying regions to entire image (thick line) through the previous image sequence.
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6    Conclusions
A Gaussian mixture model based on the rgb colour space has been presented for main-
taining a background image for motion detection. This scheme is especially successful
when applied to outdoor scenes ill uminated by daylight and is robust to fast ill umination
changes arising from moving cloud. The success results from a realistic reflection model
in which shadows are present. We are currently working on the matching and tracking of
the pedestrians in an outdoor environment, in which the principal colour chromaticity of
each target plays a central role.

References
[1] G. D. Finlayson and S. D. Hordley. Colour invariance at a pixel, In Proc. BMVC,

pp. 13-22, 2000.
[2] R. Gershon, A. D. Jepson and J. K. Tsotsos. Ambient ill umination and the determi-

nation of material changes, J. Opt. Soc. of Am., 3(10):1700-1707, 1986.
[3] J. A. Marchant and C. M. Onyango. Shadow invariant classification for scenes il-

luminated by daylight, to appear in  J. Opt. Soc. of Am., 2000.
[4] Y. Raja, S. J. McKenna and S. Gong. Segmentation and tracking using colour

mixture models, In Proc. Asian Conf. on Computer Vision, 1998.
[5] S. Rowe and A. Blake. Statistical background modelli ng for tracking with a virtual

camera, Proc. BMVC, pp. 423-432, 1995.
[6] J. M. Rubin and W. A. Richards. Color vision: representing material changes, AI

Memo 764, MIT Artificial Intelli gence Lab., 1984.
[7] C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for real-

time tracking, In Proc. IEEE CVPR Conf., 1999.
[8] C. Wren, A. Azarbayejani, T. Darrell and A. Pentland. Pfinder: real-time tracking

of the human body, IEEE Trans. PAMI, 19(7):780-785, 1997.
[9] M. Xu and T. Elli s, Colour-invariant motion detection under fast ill umination

changes, European Workshop on Advanced Video-based Surveillance Systems.

1=CS

1=⊕ BSC

02 =S 12 =S

Y

N

Y

N

YN

1=IS

       
                                    (a)                                                    (b)

Figure 6: (a) a decision tree for data fusion using intensity- and colour-based models.
(b) the fused result at frame 40 (compare with Figs. 2(a) and (c)).


