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Abstract

This paper tadkles the problem of robust change detedion in image sequences
from static caneras. Motion cues are deteded using frame diff erencing with
an adaptive badkground estimation modelled by a mixture of Gausdans. Illu-
mination invariance and elimination or detedion of shadows is achieved by
using a mlour chromaticity representation of the image data. The combina-
tion of the mlour- and intensity-based models results in some promising ap-
plications.

1 Introduction

Frame diff erencing is a technique widely used for the change detedion in dynamic im-
ages. It compares ead incoming frame with a badkground image and classfies those
pixels of significant variation into foreground. Therefore, the success of frame differ-
encing depends on the robust extradion of the badkground image. The badkground can
be modeled with a single adaptive Gaussan [8] and leant during an initiali zaion period
when the scene is empty. This method is efficient only in less dynamic scenes but has
difficulties with vadllating badkgrounds (e.g. swaying trees), badkground elements
moving, and fast ill umination changes (flood d sunlight, shadows or lights switched on).
A more robust method is to model the badkground by a mixture of adaptive Gaussans,
ead distribution of which is updated using the Expedation-Maximization (EM) algo-
rithm [5] or alinea interpolation between the previous estimation and new observation
[7]. This method can interpret vadll ating badgrounds and badkground elements that are
moving later on. However, it till cannot readily follow fast ill umination changes, which
cause spurious “foregrounds’ and can lose targets in such cases. The reason is that the
existing appli cations use only intensity-based image representations.

To robustly identify a particular objed surface under varying illumination has re-
cdved considerable dtention in colour invariance reseach [1][3][6]. For example, a
physics-based method has been proposed for shadow compensation in scenes ill umi-
nated by daylight [3]. The daylight is represented as a bladk body and the clour RGB

camera filters are asumed to be of infinitely narrow bandwidth. (R/ B)/(G/ B)" is
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found only depending on surfacerefledion as the illumination changes (A can be pre-
cdculated from the daylight model and for the spedfic canera). Under the same &
sumptions, Finlayson et al. [1] found that the log-chromaticity differences (LCDs),
IN(R/G) and In(B/G), are independent of light intensity and there even exists a

weighted combination of LCDs which is independent of both light intensity and light
colour. There dso exist adaptive schemes for colour-invariant detedion of motion urder
varying ill umination. Wren et al. [8] used the normali sed components, U/Y and V/Y, of
a YUV colour spaceto remove shadows in a relatively static indoar scene. A singe
adaptive Gaussan was used to model the badground. Raja et al. [4] used the hue (H)
and saturation (S) of an HSI colour spaceto oltain alimited level of intensity invariance
in an indoar scene. A mixture of Gausgans was used to model a multi-coloured fore-
ground oljed, in which ead Gausdan models one mlour in the objed.

In this paper, a mixture of adaptive Gaussans is used to model the possbly multiple
badgrounds at eat pixel. The image representation used is the wlour chromaticity,
rgb, which is robust to fast illumination changes in an outdoar environment lit by sun-
light and shadowed by cloud. A refledion and dffusion model in such a scene is pre-
sented in Sedion 2. As aresult, the motion detedion is insensitive to large-scde ill umi-
nation changes. This agorithm differs from the eisting applicaions of mixtures of
Gausdans in modelli ng the intensities of multi-backgrounds [5][ 7] or the wlour hues of
amulti-coloured foreground [4].

2 Colour Fundamentals

An intensity image, F = (fR, fs, fB), taken with a mlour camerais composed of sensor
responses as:

fe =[1(AN)Pp(A)S(A)dA (K =RG,B) @

where A iswavelength, | istheillumination, p is the refledance of an objed surface and
S is the canera sensitivity. Given a particular colour camera, the image intensity de-
pends only on the reflected light from the objed surface

lier (A) =1(A)p(A) &)

Therefore, the gppeaance of objeds in an image is a result of interadion between
ill umination and refledance Either the emergence of an objed or ill umination variation
can cause the image intensity to vary. To be ale to identify and tradk the same objed
surface(e.g. a badkground pixel) under varying illumination, it is desirable to separate
the variation of the ill umination from that of the surfacerefledion.

In an outdoar environment, fast illumination changes tend to occur at the regions
where shadows emerge or disappea. These shadows may be dther large-scde (e.g.
those aising from a moving cloud) or small-scde (e.g. those aising from the objeds
themselves). Here ashadow model derived from that in [2] has been used and is $own
in Fig. 1. Thereisonly one illuminant in the scene. Some of the light does not read the
objed because of ablocking objed, thus creding a shadow region and allit region on the
observed oljed. The shadow region is not entirely dark but is ill uminated by the reflec-
tion from ead ambient objed j:
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Figure 1: A refledion and shadow model.

Iambient,j (A) = Iincident (A)pambient,j (A) (3)

(1) When the blocking object is opaque
For thelit region the reflected light from the objed surfaceis:

O O
Let it (A) = Dincigent (A) + z ambient,j (A)P(A)
8 T g

4
O C @
= lincigent (A) P(A) A+ Z Patient,j (A)C
B 3 E
For the shadow region this becmes:
It , shadow (A) = Tincident (/\)p(/\)z Parbient,j (A) %)
]

The ndition that makes the refleced lights from the lit and shadow regions have
the same spedral distribution is that:

Assumption 1: the chromatic average of the ambient objeds in a scene is nealy
grey, i.e. it isrelatively balanced in al visible wavelengths and:

Z Pamient.j (A) = ©)
T

where a isindependent of A and may varies over space

This assumption is redistic for the fast-moving cloud case, in which the only ill umi-
nant is the sunlight and bah the blocking and ambient objeds are grey (or white) clouds.
Under such an asaumption, the refleded light, I, (A) , from shadow and lit regions will

stay in propartion for a given objed surface
lref,madow/lref,lit:a/(l+a) (7)
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(2) When the blocking object is semi-opaque

The refleded light from the lit objed surfaceis the same & that in Eq. (4). The
shadow region is not only ill uminated by the refledion from the anbient objeds but also
by the transmitted light from the blocking objed:

ltra(A) = Iincident (A)T(A) (8)

where T isthe transmittance of the blocking objed.
For the shadow region the refleded light from the objed surfaceis:

O O
| et shadow = gtra(A) + z | ambient, (A)g)(}\)
‘ )
O O
= lincident (A)p(A)g(A) + Z Pampient, (A)E

On the basis of assumption 1, the condition that makes the refleded lights from the
lit and shadow regions have the same spedral distribution is that:

Assumption 2: the transmittance of the blocking objed is relatively balanced in all
visible wavelengths, i.e.:

T(A)=p (10)
where B is independent of A ( 8 <1) and may vary over space This assumption is red-

istic for clouds that do not favour any spedfic visible wavelength. Under the assump-
tions 1 and 2 the refleded light, I, (A), from shadow and lit regions will stay in pro-

portion for a given objed surface We have:
Iref,shadow/lref,lit :(B+a)/(1+a) (11)
Suppose that the camera sensitivity, S (A) in Eq. (1), is properly charaderistised so

that no component of the wlour image, F, is sturated. The relations iown in Egs. (7)
and (11) lead to the image intensities, f, , at all colour channels beingin propation, no

matter whether the objed surfaceis diredly lit or in shadow. The propartionality be-
tween RGB colour channels can be better represented using the normalised colour,
f= (f f fb), ead component of which is:

rrlgs
fo=f [T+ 12+ 82 12

and will keep constant for a given objed surfaceunder varying ill umination. Therefore,
it is appropriate to model ead f component using a Gausdan.

3 A Mixtureof Colour Distributions

A mixture of N Gausdans has been used to model the potentially multi ple badgrounds
at ead pixel. The probability of observingavalue, f,, at apixel is:

P = Y 0, Gl E,) 13
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where G is the Gaussan probability density function, p;, and X;, are the (temporal)
mean vedor and covariance matrix of the i-th distribution, respedively; w, is an esti-

mate of the weight, which refleds the likelihood that the distribution acaunts for the
data. To simplify the computation, the rgb values are assumed to be independent and

then X, can be gproximately represented using the sum of its diagonal elements, oft .

We gproximate the initial values of the temporal statistics using the spatial statistics
over alocd region (n pixels) of the start frame:

-1
Boo(X) = n ;fo(x +AX)

02000 =2 3 [folx+ %) = oo

For the following frames, every new observation, f,, is chedked against the N Gaus-

(14

sian distributions. A match is defined if |f, —p, 4 <co,,, (c=3). The parameters of
the matched distribution are updated as:

i () = (L= @)1y 0 () + 9f, (%)
, (15)
0% (X) = (1= )07, 00 +B[f —p (X)

where ¢ controls the updating rate, and the weight w, ,(x) is increased. For the un-
matched j-th distribution (j #i), pn;, and o;, remain the same, but w,,(x) is de-

creased.

If none of the existing distributions matches the aurrent pixel value, we have to either
creae anew distribution, given lessthan N existing distributions, or replacethe least
probable distribution with a new distribution. The distribution(s) with greaest weight is
(are) considered as the badkground model(s):

i(x,t) = argminjw, , (x)} (16)
i

One alvantage of the Gausdan mixture model is that when something is all owed to
become the badkground, the existing model of the previous badkground is gill main-
tained. Therefore, if an objed is gationary just long enoughto become part of the badk-
ground (e.g. a parked car) and then it moves, the distribution describing the previous
badkground can quickly explain the new objed-freebacdkground.

4 Experimental Results

To assssthe significance of the mlour-invariant motion detedion, we evaluated it at
both pixel and frame levels using a set of image sequences [9]. The image sequence
shown here was cgptured at a frame rate of 2Hz. Eacdh frame was losdly compressed in
JPEG format and has a frame size of 384x288 pxels. This quence alequately repre-
sents the aundant contexts of a daylit outdoar environment, with fast illumination
changes, waving trees, shading of the tree caopies, highlights of speaular refledion, as
well as pedestrians (refer to Fig. 2(b)).
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Figs. 2 and 3 show the results of the motion detedion in two frames of the image se-
gquence The foreground pixels in the rgb results are those that go beyond [u-3.50,
u+3.50] of the most probable Gaussans. The foreground pixelsin the RGB results arise
from a global threshold on the difference between the observation and the mean of the
most probable Gaussan. The thresholding level is sleded so as to produce “blobs’ of
similar sizesto those in the @rresponding rgb results. In order to rule out isolated “fore-
ground” pixels and fill gaps and holes in “foreground” regions, a 3x7 closing (dil ation-
erosion) operation has been applied to the binary image of detected “foreground” pixels.

The grey-level intensity images here were obtained using | =/ f2 + 2 + fBZ/«/§

Fig. 2 (at frame 40) is an example mmparing the RGB and rgb results under a minor
illumination change. The foreground “blobs’ extraded using rgb space ae & coherent
as those using RGB space Because of the diff erent emphasis of image contexts for both
the @lour spaces, the wrresponding blobs in Figs. 2(a) and (c) may appea as different
shapes.

Fig. 3 (at frame 78) shows the RGB and rgb results under a mgjor ill umination
change (refer to Fig. 5). In the RGB result, Fig. 3(a), alarge aeaof the badkground is
deteded as a huge foreground oljed, in which the ground-truth targets (pedestrians) are
submerged and lost. On the other hand, in the rgb result, Fig. 3(c), fast illumination
changes give no additional “foreground” blob and the “ground truth” targets are dealy
visible. Note the poa detedion of some foreground blobs on the left of the frame is
caused by the stationary pedestrians that are being absorbed into the estimated “back-
ground” by the adaptive Gausgan model.

ey, F . l
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b
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Figure 2: Motion detedion at frame 40 with little illumination change: the deteaed
blobs (left) and corresponding bounding boxes overlaid on the frame (right) using the
RGB (top) and rgb (bottom) spaces.
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Figure 3: Motion detedion at frame 78 with a mgjor ill umination change: the deteded
blobs (left) and corresponding bounding boxes overlaid on the frame (right) using the
RGB (top) and rgb (bottom) spaces.

The foreground pixels above ae dustered into foreground “blobs’ using a cmnneded
component analysis. A minimum number of foreground pixelsis st for eat blobto rule
out small disturbances. Due to the varying sizes of possble foreground targets, e.g. from
a pedestrian to two interseding trucks, the seledion of the crresponding maximum
number is not so trivial as that of the minimum number and has not been used here in
order to dfferentiate the results of the intensity- and colour-based models. Each deteded
“foreground” blob is labelled by a redanguar bounding box, as siown in Figs. 2(b)(d)
and 3(b)(d).

Table 1 shows the number of the detedion errors in the same image sequence, from
frame 16 (skipping the leaning period) to frame 100. Multi ple objeds are mnsidered as
a singe ground-truth objed if they are grouped. Most of the undeteded pasitives occur
when ground-truth objeds are lost in large-scde ill umination changes. Most of the false
pasitives occur when a pieceof badkground under ill umination changes is determined as
a “foreground” objed or occasionaly the trees are waving. The wlour-based model is
much more succesgul in dedingwith ill umination changes.

Models Intensity-based |  Colour-based
No. of ground-truth objeds 514

No. of undeteded pasitives 159 2

No. of false positives 418 9

Table 1: The detedion errorsin an image sequence with fast ill umination changes.
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5 Applications

Colour and intensity refled the two distinct charaderistics of an image. Motion detec-
tion based on only one asped may fail in some spedfic situations. We have combined

the motion detedion results using the intensity, | =,/ f2 + 2+ 72 /\/5 with those

using the rgb colour space Such an (r,g,b,I) colour spaceis a complete representation of
the image information in that it can be invertibly transformed to and from the RGB col-
our space However, this provides some promising applicaions that are not readily ob-
tained from RGB spaceonly.

(1) Hlumination change detection

An intensity-based model is snsitive to bah foreground targets and ill umination
changes. A colour-based model responds only to targets. Therefore, aregion can be de-
termined as being shadowed or re-lit if the rgb components are stable but the | compo-
nent has a significant change. Suppcse S, and S. are the binary sets of motion detec-

tion using intensity- and colour-based models, respedively, and a value of 1 represents
the deteded foreground (O for badkground). The regions where ill umination varies in-
clude aset of pixels, X, which satisfy:

S(X) =S (x) US O B)(X) 17)
where [0 denotes the morphologicd dilation and B is the structuring element. The dila
tion operation gves sme tolerance of the different foreground profiles deteded using
intensity- and colour-based models. The results of illumination change detedion are
shown in Fig. 4, where B is 3x7 sized.

Self-shadow detedion can gude paositioning and orientating of light sources in a
scene. In an environment with large-scde ill umination changes, the detedion result can
guide when to use an intensity- or colour-based model.

@) b) (
Figure 4. The regions with illumination changes deteded at frame 40 (a) and 78 (b),
respedively.

(2) Switching between models

A colour-based model is vulnerable to failure when deteding targets in dim or satu-
rated regions, where the mlour chromaticity is unreliable. In contrast, an intensity-based
model has a rather consistent performance, provided no drastic ill umination change oc-
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curs. Therefore, the ratio of ill umination-varying regions to entire image, as well as the
average intensity (ill umination level), can be used as the indicator of when to use an in-
tensity- or colour-based model. For example, at sunset when the aserage intensity in a
scene is very low, the alour-based model is switched off and only the intensity-based
model kegxs working. Only when the average intensity becomes higher than some
threshold, both models are gplied to the image sequence simultaneously. The final de-
tedion result is switched to that of the lour-based model if the level of illumination
change is higher than some threshold; Otherwise it is switched to either the result of the
intensity-based model, that of the alour-based model, or the combination of both (see
datafusionin (3)).

Fig. 5 shows the normalised average intensity and the ratio of illumination-varying
regions to entire image, through the previous image sequence. The normalised average
intensity is bounded between 0 (bladk) and 1 (white). For the ratio of ill umination-
varying regions, the pe&k at frame 0 arises from the leaning errors of the initial model
parameters, and ead of the other smaller pedks (with a magnitude of 0.05-0.15) corre-
sponds to a locd ill umination change due to the floodng of sunlight; The highest pek
arises from a global ill umination change.
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Figure 5: The normalised average intensity (thin ling) and ratio of ill umination-
varying regions to entire image (thick line) throughthe previous image sequence

(3) Data fusion between models

The intensity-based model fails to deted targets with a similar intensity to badk-
ground, and the lour-based model misses targets with a similar colour chromaticity to
the badkground. Therefore, both sets of the results can be combined to give better detec-
tion. One @mmbination scheme favouring the wlour-based model is to add some points
of S, whichis gatialy closeto S., into S.. This can compensate for the lossof the
colour-based model due to the similarity of the @lour chromaticity between targets and
badkground. This combination scheme can be @nfigured into a dedsion tree shown as
inFig. 6(a). The set of the fused foreground pixels, S,, can be mwmputed as:

S(X) = S (X) + & () [5 (x) LS O B)(X) (18)

Fig. 6(b) shows the result of applying such a wmbination scheme to frame 40. It is

noted that the blob at the bottom is dil ated to the same size & that for the intensity-based

result (Fig. 2(a)). The combination is favourable to the mlour-based result in that the

regions with illumination change (in the upper-left corner) are till excluded and the
right-most blobis as complete & that in the mlour-based result (Fig. 2(c)).
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Figure 6: (a) a dedsion treefor data fusion using intensity- and colour-based models.
(b) the fused result at frame 40 (compare with Figs. 2(a) and (c)).

6

Conclusions

A Gaussan mixture model based on the rgb colour spacehas been presented for main-
taining a badkground image for motion detedion. This sheme is espedally succesdul
when applied to outdoar scenes ill uminated by daylight and is robust to fast ill umination
changes arising from moving cloud. The successresults from a reditic refledtion model
in which shadows are present. We ae airrently working on the matching and trading of
the pedestrians in an outdoar environment, in which the principal colour chromaticity of
ead target plays a central role.
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