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Abstract

In this paper we address the problem of separating Lambertian and specu-
lar reflection componentsin order to improve the quality of surface normal
information recoverable using shape-from-shading. The framework for our
study is provided by the iterated conditional modes agorithm. We develop
a maximum a posteriori probability (MAP) estimation method for estimat-
ing the mixing proportionsfor Lambertian and specul ar reflectance, and a so,
for recovering local surface normals. The MAP estimation scheme has two
model ingredients. Firstly, there are separate conditional measurement den-
sities which describe the distributions of surface normal directions for the
Lambertian and specular reflectance components. The second ingredientisa
smoothness prior which models the distribution of surface normal directions
over local image regions. We experiment with the method on real-world data.
This reveals not only that the method accurately estimates the proportion of
specular reflection, but that it also resultsin good surface normal reconstruc-
tion in the proximity of specular highlights.

1 Introduction

Shape-from-shading is concerned with recovering surface orientation from local varia-
tions in measured brightness. There is strong psychophysical evidence for its role in
surface perception and recognition [1, 13, 11].

The observation underpinning this paper is that although considerable effort has gone
into the recovery of accurate surface geometry, existing shape-from-shading methods are
confined to situations in which the reflectance is predominantly Lambertian. When local
specularities are present, then the estimated geometry may be subject to error. The main
problem that can occur is that specular highlights may be misidentified as curved surface
features such as ridges and domes. Nonetheless, if specular highlights can be accurately
located, then they can provide important cues that can be used to constrain the recovery
of surface shape. For instance, Healey and Binford [9] have shown how a simplified ver-
sion of the Torrance and Sparrow model [19] can be used to analyse surface curvature.
In a comprehensive treatment of specular shape-from-shading Brelstaff and Blake [3, 5]
have analysed the geometric constraints provided by specularities, and have shown how to
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detect specularities using Lambertian irradiance constraints. Drawing on psychophysics,
Blake and Bulthoff [4] have developed a computational model of the shape information
available to a moving observer from the apparent movement of specularities. Several au-
thors have looked critically at the physics underlying specular reflectance. For instance,
Nayar, Ikeuchi and Kanade [17] have shown that the Torrance and Sparrow model [19] is
applicable to the modelling of the specular obe rather than the specular spike. In a series
of recent papers, Lin and Lee have shown how specular reflections due to multiple light-
sources can belocated in multi-band imagery [14, 15, 16]. Finaly, Nayar, Fang and Boult
[18] have used polarisation filters to detect specular reflection. The main conclusionto be
drawn from this brief review of theliteratureis that although specularities provideimpor-
tant geometric constraints for shape-from-shading, their reliable modelling and detection
in single-band (i.e. grey-scale) images has proved an elusive goal.

Our aim in this paper is to develop a Bayesian framework for recovering shape-from-
shading in the presence of local specular highlights. We adopt a maximum a posteriori
probability estimation framework using the iterative conditional modes algorithm of Be-
sag [2]. Theaimisto estimate the proportionsof Lambertian and specular reflectance, and
hence recover more accurate surface normal directions. To meet this goal we must pro-
vide probability distributions for the surface normals associated with the observed image
intensity. We develop a geometric framework and concentrate on modelling the angular
distributions for the surface normals resulting from the two reflectance components. In
the case of Lambertian reflectance, the surface normal is constrained to fall on a cone
whose axisis aligned in the light source direction and whose apex angle is determined by
the observed image brightness. We assume that angular deviations from this reflectance
conefollow aGaussian distribution. For specular reflectance, the surface normal direction
isthe bisector of the viewer and light source directions. Angular deviationsfor the surface
normals associated with the specular spike are assumed to follow a Beckmann distribu-
tion. At each image location, the Bayes framework allows us to estimate the proportions
of Lambertian and specular reflectance. With this information to hand we can compute
the weighted mean of theideal Lambertian and specular reflectance directions, and hence
obtain the posterior mean surface normal direction.

From the posterior mean surface normal direction, we can reconstruct the specular
reflectance using the Torrance and Sparrow model. This allows us to subtract specular
hightlights from the original image. By re-applying the shape-from-shading technique
to the residual matte reflectance component, we are able to extract better surface nor-
mal information which is free of the spurious curvature artifacts associated with specular
highlights. Experiments on real world images reveal promising results.

2 Reflectance Model

In this section we outline the geometry of the reflectance processes which underpin our
shape-from-shading model. We adopt a two-component model in which the predomi-
nantly Lambertian surface reflectance exhibits local specular highlights.

2.1 Lambertian Reflectance

In the case of Lambertian reflectance from a matte surface of constant albedo illuminated
with asingle collimated light-source, the observed intensity isindependent of the viewing
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direction. The observed intensity depends only on the quantity of absorbed light, and
thisin turn is proportional to the cosine of the incidence angle between the light source
direction and the local normal vector to the surface. Suppose that L is the unit-vector
in the direction of the light source and that N, is the unit-vector in the surface normal
direction. According to Lambert’s law, the observed image intensity at the pixel with
co-ordinates (i, j) is  E(i,j) = Ni(i,j).L

Lambert’s equation provides insufficient information to uniquely determine the sur-
face normal direction. However, the equation does have a simple geometric interpretation
which can be used to constrain the direction of the surface normal. The equation specifies
that the surface normal must fall on the surface of a right-cone whose axisis aligned in
the light-source direction L and whose apex angle is cos~* E(i, 7). This property has
recently been exploited by Worthington and Hancock [21] to develop a two-step itera-
tive process for shape-from-shading. The process commences from a configuration in
which the surface normals are placed on the position on the irradiance cone where their
projections onto the image plane are aligned in the direction of the local (Canny) image
gradient.

In the first step, the surface normal directions are subjected to smoothing in such
a way as to satisfy curvature consistency constraints. The resulting smoothed surface

=, (n)
normal N; will not fal on the irradiance cone and will hence not satisfy Lambert's
law. To overcome this problem the smoothed surface normal is rotated onto the nearest
location on the irradiance cone. The resulting surface normal, which satisfies Lambert’s

o ~,(n) L s
law, is Ni”“) = N cos(f) + (R x N )sin(f) where the rotation axis is given by
L S 7 ~(n)
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2.2 Specular Reflectance

The second component of our reflectance processis concerned with modelling local spec-
ular highlights on the observed surface. For specular reflection the surface normal, the
light source direction and the viewing direction are coplanar. The incidence angle (i.e.
the angle between the surface normal and the light source direction) is equal to the an-
gle of specular reflectance (i.e. the angle between the surface normal and the viewing
direction). Hence, for specular reflection, the direction of the surface normal N é”) isthe
bisector of thelight sourcedirection (L) and the viewing direction (V') and the unit-vector
s Ny = (LD

Itisimportant to stress that the surface normal for the specular reflectance component
isfully constrained if the light source direction and the viewing direction are known.

3 Bayesian Framework

The aim in this paper is to develop a Bayes-decision scheme for classifying pixels ac-
cording to the two reflectance modes described in the previous section. In other words,
we wish to compute the a posteriori probabilities of specular or Lambertian reflectance.
To meet this goal we make use of the iterated conditional modes algorithm of Besag [2].
Although the method has notoriously poor global optimisation properties, we use it here



because it is simple and relatively efficient. In this paper our primary aim is to investi-
gate the feasibility of applying probabilistic methods to the shape-from-shading problem.
The use of more sophisticated optimisation methods such as simulated annealing, Markov
chain Monte-Carlo or mean field annealing will be the focus of future work.

The aim is to label pixels according to the reflectance mode from which they orig-
inated. The class assignment for the pixel (7, ) at iteration n is denoted by wl(f;-). The
assignment may be drawn from the set Q@ = {S, L} where S is the specular reflectance
label and L is the Lambertian reflectance label. For each image location, we maintain
a specular surface normal and a Lambertian surface normal which satisfy the geometric
constraints outlined in Section 2. At iteration n of the algorithm the currently available
estimates of the Lambertian and specular surface normals at the pixel indexed (i, j) are
respectively N £") (i,7) and N é") (i,7). Inthe case of the specular component, the nor-
mal direction is in the direction of local specular reflection, i.e. the bisector of the light
source and viewing directions, and does not change with iteration number. In the case of
Lambertian reflectance, the surface normal direction varies with iteration number, but is
always projected to be positioned on the irradiance cone.

To develop our decision process, we require two probabilistic modelling ingredients.
The first of these are separate probability density functions which can be used to rep-
resent the distributions of surface normal directions for the specular and Lambertian re-
flectance components. We evaluate these densities at the posterior mean surface normal
M (™ (i, j) computed at iteration n. The reason for doing thisis that the current values of
the specular and Lambertian normals are guaranteed to satisfy the geometric constraints
outlined in Section 2. As aresult, they will be associated with vanishing angular error.
Accordingly, we let p(M (™ (i, j)|w§3) = L) be the probability distribution for the pos-
terior mean surface normal under the Lambertian reflectance model. Similarly, we let
p(M™ (i, j)|w§f]’-) = S) denote the distribution function for the posterior mean surface
normal for the specular reflectance component.

The second probabilistic ingredient is a smoothness prior for the selected surface nor-
mal direction. This component of the model incorporates contextual information. We et
P(N™ (i, )| M™ (k,1),V(k,1) € G; ;) bethe conditional probability of the Lambertian
surface normal at thelocation (i, j) given the field of surrounding posterior-mean surface
normals M (™) (k,1),Y(k,l) € G;; in the neighbourhood G; ; of the pixel (i, 7). With
these ingredients, then according to the iterated conditional modes, the probability that
the pixel (i, j) belongsto the Lambertian class at iteration n is

Pt — ) = P Dlwr) = DP G IM (1), (kD) € Guy)

> aco PTG, ™ = A)PN (i, )| M) (k,1),Y(k, 1) € Gij)

The probability that the surface normal belongs to the specular class is the complement,
ie Pw" =8) =1~ P(w" = L). These probabilities can be used to label pixels

i,j )

according to the specular and Lambertian reflectance modes. With the a posteriori class
probabilities to hand, we can update the estimate of the posterior-mean surface normal in
the following manner

MO0, j) = N§ (6, )P = 8) + N (i, )P = L)

i,



4 Mode Ingredients

To apply the decision rule developed in the previous Section, we require models for the
probability density functionsfor the distributions of specular and Lambertian surface nor-
mal directions, and also for the conditional priors for the surface normals. In this section
we detail these models.

4.1 Surface Normal Distributions

We now provide details of the probability densities used to model the distributions of
surface normal directions. In the case of the L ambertian refl ectance component, the model
is based on the difference of predicted and observed image intensity. In the case of the
specular component, we do not use intensity information; we simply use the differencein
angle between the posterior surface normal and the specular reflectance spike.

4.1.1 Lambertian Reflectance

Our model of the Lambertian reflectance process assumes that the observed intensity val-
ues follow a Gaussian distribution with variance o2 . At the pixel indexed (4, j) the mean
intensity is 17 (™) (i, j).L. Under these assumptions we can write

- - 2
—n) e oy 1 -1 (E(i,j) — M™(i,j).L)
M™ (G, j)|w™ = L) = exp | — : :
( (i, 5)|w; ) oo P |2 o

It must be stressed that there are aternative models to hand. For instance, Wolff
and Nayer [20] have looked critically at the validity of Lambert’'s law and have found
departures at small grazing angles to the surface. However, these models require the
specification of additional parameters and hence prove to be too cumbersome for our
purposes.

4.1.2 Specular Reflectance

The modelling of specular reflectance and specular highlights has attracted considerable
attention in the computer vision and computer graphics communities. Broadly speaking
there are three approaches. The model of Torrance and Sparrow [7, 19] captures the
physics of scattering by the micro-facet structure of a surface. However, it is difficult to
control and requires that a number of physical parameters for the surface be provided.
The Beckmann model provides asimpler picture which captures the angular shape of the
specular spike. Finally, Healey and Binford [9] have a smple model which can be used
to model the distribution of specular intensities for regions of high surface curvature.
Here we are only interested in the distribution of surface normal directions for local
specular highlights. Hence we use the Beckmann distribution to model the angle o =
cos™ 1 (MM (i, j) - N{" (i, j)), between the posterior mean surface normal 1 (™) (i, j)
and the predicted direction of the specular spike N é”) (i,7) @ the pixel indexed (i, 7).

P (i, )l = §) = D(a) = ———— exp l— (tan(‘”) ]
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where o is a parameter which controls the angular spread of the specular spike. This
distribution simply models deviations of the posterior mean surface normal away from
the direction of the specular spike. It makes no attempt to model either the distribution of
specular intensities, nor the distribution of surface normal directions within the specular
lobe.

4.2 Smoothness Prior

Our model for the surface normal smoothness prior is based on the average value of the
inner product of the surface normal at the location (7, j) with the surrounding field of
surface normals. We write

—

n) . - (n 1 F(n),/. - “(n
P<N§>(z,y>|M<><k,1>,v<k,1>eGi,j>=—2|G,_|{|Gi,j|+ > NG4) M (k)
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5 Specular Shape-from-shading Algorithm

Having described the Bayes framework and the associated two-mode reflectance model,
we are now in a position to develop a practical shape-from-shading algorithm. At each
image location, we maintain a specular surface normal and a Lambertian surface normal
which satisfy the geometric constraints outlined in Section 2. This process draws on the
contextual information provided by the surrounding field of surface normal directions.

We commence by initialising the algorithm. The initial Lambertian surface normal
N{(i, j) is constrained to lay on the irradiance conein the direction of the image gradi-
ent. The specular surface normal isthe bisector of the light source and viewing directions.
The subsequent iterative steps of the algorithms are as follows:

e Using the currently available estimates of the specular and Lambertian surface nor-
mals, we compute the posterior mean surface normal M (") (i, §).

e Thefield of posterior mean surface normals is subjected to local smoothing. Here
we use the curvature sensitive smoothing method described by Worthington and

Hancock. The smoothed surface normal is denoted by M 1({’) (2, 7).

¢ \We update the current estimate of the Lambertian surface normal direction by pro-
jecting the smoothed posterior mean direction onto the nearest location on the ir-
radiance cone using the geometric construction outlined in Section 2.1. This gives
us the revised surface normal N é”) (i,7). Note that the specular surface normal
directionis fully constrained and hence does not need to be updated.

¢ With the smoothed posterior surface normal direction to hand we compute the con-
ditional measurement densities p(M ;" (i, j)|w\" = L) and p(M 3" (i, h)|w(") =
S) for the Lambertian and specular reflectance modes. Taking the smoothed pos-
terior mean surface normal directions and the current surface normal directions for
the two reflectance modes, we compute the smoothness priors
P(NE (,§)| M3 k1), V(K1) € Giy) and PN (i, )80 (k, 1), Yk, D) €
Gi,;). With these two ingredients to hand, we compute the updated with-context
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a posteriori probabilities for the specular and Lambertian reflectance modes, i.e.
P(w" = S)and P(w}" = L).

e With the a posteriori reflectance label probabilitiesto hand, we update the value of
the posterior mean surface normal using the formula

MO+, j) = N9V (1,) P = S) + NV (i, )Pw{ = L) (1)

Thisissimply the weighted sum of the unit-vectorsfor the specular and Lambertian
reflectance components.

The steps of the algorithm are summarised in Figure 1.

6 Specular Subtraction

In this Section we describe how the posterior mean surface normals delivered by our
shape-from-shading algorithm can be used for the purposes of reconstructing the spec-
ular intensity component. The reason for doing this is that the specular intensity may
be subtracted from the original image intensity to give a corrected Lambertian image.
By re-applying the shape-from-shading algorithm to this corrected intensity image, we
aim to recover improved surface normal estimates, free of the high curvature artifacts of
specular highlights. The process of subtracting the specular component can be viewed as
equivalent to that adjusting the angles of the Lambertian reflectance cones described in
Section 2.1. In principle, this subtraction process could be iterated several times. How-
ever, in practice we find that one application is sufficient to give insignificant specular
probabilities over the entire image.

We use the Torrance-Sparrow model [19, 7] to reconstruct the specular intensity com-
ponent. According to this model, the specular contribution to the image brightnessis

S E G D(Ol)
Is(i,j) = (KW> (MWD (i, §).V) (MWD (i,5).L)

where M (1) (i,7) isthefina posterior mean surface normal direction. The model is con-
trolled by four terms. The first of these is the Fresnel term which is close to unity, i.e.
F = 1.0. Secondly, there is the geometrical attenuation factor

M, §).Ns (i, ) M D (0, ) V) ) MD (i, 3).Ns(i ) (M (i, 5).L)
V. .Ns(i.j) ’ V.Ns(i, 7)

Thirdly, thereis the facet slope function which we model using the Beckmann distribution

D(a). Fourthly, and finally, there is the “equaliser” te'em K = 7o ?(Ns(i,5).L)>.

With the reconstructed specular intensity to hand, we can compute the matte reflectance

component

G = min [1,2

IL(Z,]) = E(laj) - IS(Z,.])
The specular subtraction processis controlled by the single roughness parameter o of the
surface. Once the corrected Lambertian intensity I1,(¢, j) is to hand, then we can use it
as input to a re-application of our shape-from-shading algorithm. However, rather than
initialising the algorithm with surface normal directions defined by the image gradient,
we use the posterior mean surface normal directions available from the application of the
shape-from-shading algorithm to the raw image intensity.
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7 Experiments

We have experimented with the new shape-from-shading method on a variety of real
world images of shiny objects. In Figure 2 we show the results obtained for an image
of aporcelain urn. Theimage was captured using an Olympus 10E camera and the object
was illuminated with a collimated tungsten light. Here the camera viewing direction and
the light source direction are separated by 20 degrees. From left to right, theimagesin the
first row of the Figure show the original image, the specular component and the separated
Lambertian reflectance component. Thereis strong specular reflection near the centre of
the cylindrical body of the object and around the curved handles. Intheimage of the Lam-
bertian reflectance component there is only slight evidence of residual specular highlight
just below the ribbed structure on the surface. In the second row of Figure 2 from left
to right we show the needle map extracted from the Lambertian reflectance component,
the needle map extracted from the original image using the algorithm of Worthington and
Hancock [21], and thefield of vector differences between the two needle maps. Inthe case
of the Worthington and Hancock algorithm, thereis significant local needle-map structure
around the central specularity. In the case of our new specular subtraction method, the
structure is absent. From the difference-field for the two needle maps it is clear that the
main structural differences occur around the handles and body of the urn. The two images
inthe final row of Figure 2 show thetotal surface curvature extracted by the new specular
subtraction method (left) and the Worthington and Hancock algorithm (right). Here the
specularities manifest themsel ves as high curvature local surface features.

Figures 3 and 4 repeat this sequence of images for details centred around the the left
handle of the urn and the bright specular highlight in the centre of the urn. These images
underline the observations made above. Two more sequences are shown in Figures 5 and
6 for a porcelain model of a bear and the neck of a porcelain vase. Again the specular
subtraction works well.

8 Conclusions

In this paper, we have shown how to separate the matte and specular reflectance from
grey-scale images of shiny curved objects. To do this we have developed a maximum a
posteriori probability estimation framework for specular shape-from-shading. The algo-
rithm uses separate probability density functions to model the angular distributions for
the surface normals resulting from the specular and matte reflectance components. The
method allows us to subtract the specular reflectance component from shiny surfaces.
This allows us to recover surface shape-information which does to contain the curvature
artifacts produced by local specular highlights. The method has been demonstrated to be
effective on avariety of real world images.
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Figure 2: Results for a porcelain urn
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Figure 3: Results for the left handle of the urn

Figure 4: Results for the bright specular highlight of the urn
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Figure 6: Results for the neck of a porcelain vase
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