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Abstract

A perceptual approach to generating features for use in indexing and retriev-
ing images is described. Salient regions that immediately attract the eye
are colour (textured) regions that usually dominate an image. Features de-
rived from these will allow search for images that are similar perceptually.
We compute colour features and Gabor colour texture features on regions
identified from a coarse representation of the image, generated by a multi-
band smoothing algorithm based on human psychophysical measurements
of colour appearance. Images are retrieved, using a multi-feedback retrieval
and ranking mechanism. We examine the performance of the features and
the feedback mechanism.

1 Introduction

Textual annotation still remains a highly accurate and popular form of indexing for image
database retrieval. However, it is a cumbersome and impractical task when a significant
store of images must be produced, maintained, and updated. As an alternative approach,
content based image retrieval (CBIR) systems aim to generate features automatically from
images to provide a fast mechanism for indexing and retrieval. There is a large body of
work in CBIR, including systems such as QBIC[1], VisualSEEk[2], and Photobook[3],
reviewed in [4, 5], which has grown in recent years particularly encouraged by the fast
global expansion of the internet and users’ multimedia needs. Most CBIR systems use
a variety of indexing features such as colour, texture, and shape. Other types of features
sometimes used in CBIR are stated in [4] as wavelets or multiscale Gaussian derivatives.

In this work, we concentrate on the use of colour and colour texture features but based
on perceptual appearance. The basic human perceptual categories of colour can be used
as vital information to classify or segment colours [6]. While most CBIR methods using
colour features rely on colour histogram indexing, the colour granularity provided by his-
tograms is not always necessary especially when the final observer is a human. It is more
natural to segment an image into regions of similar colour and use them to retrieve other
images containing regions of similar colours. For example, Berlin and Kay [7] identi-
fied that humans segment colour into 11 basic categories, three achromatic (black, white,
grey) and eight chromatic (red, green, yellow, blue, purple, orange, pink and brown). Such
kinds of perceptual categories have been used in CBIR systems such as Perceptual Image
Similarity And Retrieval Online (Pisaro) [8] which concluded that perceptual colour seg-
mentation performs better than non perceptual-based techniques. De Bonet and Viola [9]
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also approximated perceived visual similarity using a characteristic signature computed
by extracting thousands of very specific local texture and global structure features.

The method proposed here is based on recent research on the psychophysics of the
human visual system (HVS) [10]. Human colour perception, depends on the spatial fre-
quency of the colour component. Thus, colours that appear in a multicolour pattern are
perceived differently from colours that form uniform areas. For example, any coloured
pattern with frequency higher than8 cycles per1� of visual angle is seen as black [10].
This concept was used in [11] as follows: they first generated a multiscale representation
of a colour texture image using multiband Gaussian filters that emulated human colour
perception and resulted in same size images representing what the human viewer would
see at different distances from the scene. The coarsest image was then initially segmented
as an embryonic, perceptual representation of the original image. Next, they developed
a multilevel probabilistic relaxation algorithm to progressively improve and refine the
initial segmentation while stepping through the multiscale images from coarse to fine.

In this work we are interested in, and use only partially, the perceptual smoothing
stage of [11]. We assume that the regions in just one “distant” or coarse image adequately
provide us with enough perceptual clues regarding the main colours and patterns of the
image, and further refinement of an initial segmentation can be ignored. This is supported
by the psychophysical evidence presented in [6]. We derive simple colour and texture
features from each region found. The latter features are generated using the outputs of
filters from a Gabor filter bank similar to [12, 13]. The use of Gabor filters is inspired by
the multichannel filtering theory of visual information in the early stages of the HVS.

2 System Overview

In our CBIR system, we extractperceptualcolour features and colour texture features to
describe the characteristics of perceptually derived regions in the image. A feature vector
is formed for each region. The distance measure between feature vectors is the Euclidean
L2 norm. We apply a recursive matching process which feeds back to the latest set of
images found and selects a new subset to refine the rank of the final results without user
intervention. Consider that we have a total ofF images in the database. When processing
a query, the query vector~q is matched against all other feature vectors in the database and
theG highest ranked images are selected, i.e.G = 	(F ; ~q) where	 is the query search
operator. The feature vector~r associated with a region spatially closest to the region from
which the original query vector~q came from is then selected and a new search is initiated.
The new search however is limited to the set ofG images whose feature vectors were
matched from the initial search. The purpose is that only those subsetH of G images are
now ranked that contain regions with feature vectors that closely match both~q and~r:

H = 	(G;~r) which is equivalent toH = 	(	(F ; ~q);~r) (1)

This process can be repeated again using the next spatially close region (with feature
vector, say~s) and so on until there are no more regions in the query image. In our im-
plementation, we perform this iteration three times by settingG = 30 andH = 20 until
a final set of10 images remain, however, the system could be easily adapted to perform
more iterations. Three iterations is a good compromise between accuracy and speed. Two
regions in an image are determined to be spatially close by comparing the proximity of
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their centres of gravity. Figure 1 illustrates a three step multi-feedback process. The multi-
feedback subset retrieval and ranking process ensures that the final selection of images at
the last step will be ranked to be as close as possible to the image the query vector came
from, in terms of the number of common regions and overall similarity. It is automatic
multi-region search and avoids user definitions and intervention.

q

Search

using 

Search

using 

vector
vector

Search
using 
final

next

Final

Ranked

Images

Segmented Image

sr

vector

query

Full Database First Subset Second Subset
H images G images

3
1

2

Top I images
Third Subset

Figure 1: The multi-feedback subset retrieval and ranking process recursively ranks sub-
sets of images from the full database. In this work:G = 30, H = 20, andI = 10.

3 Perceptual Smoothing and Feature Generation

The factors that influence the response characteristics of the HVS are the temporal and
spatial variations of the stimuli as well as the spectral properties of the stimuli. When an
observer deals with multi-coloured objects, their colour matching behaviour is affected by
the spatial properties of the observed pattern [10]. Furthermore, the HVS will experience
loss of detail at increasing distances away from the object. It perceives coloured textures at
a large distance as areas of fairly uniform colour, whereas variations in luminance, e.g. at
the borders between two textures, are still perceived. A multiscale smoothing algorithm
was introduced in [11] that coarsens an image according to human perception depend-
ing on the distance it is being viewed from. The opponent colour space was used with
each plane smoothed separately with different 2D spatial kernels [11], with the result that
the luminance plane is blurred lightly, whereas the chromaticity planes are blurred more
strongly. This spatial processing technique is pattern-colour separable. We implemented
the 2D Gaussian kernels using 1D separable filters. Three typical filters used for the op-
ponent colour bands are shown in Figure 2 to illustrate the varied amount of smoothing.

Once the kernels are generated and applied to the image in the opponent colour space,
the image can be converted to CIE-Luv which is a perceptually uniform space and there-
fore more suitable for carrying out colour measurements and for generating represen-
tative features for our CBIR application. Figure 3 shows an image and its associated
smoothed images at varying distances for both perceptual and typical single-kernel Gaus-
sian smoothing. The Gaussian kernel used for comparison has the same size as the per-
ceptual masks with� being such that at the cutoff size its value is1% of its central value.
It is clear from Figure 3 that the perceptually smoothed images provide a more realistic
representation and blurring of a scene viewed at varying distances than the Gaussian.

In [11] it was shown that a distance of8 meters is a suitable choice for achieving good
segmentation. In this work we apply the appropriate filters to obtain a smoothed image
as if viewed at8m. This coarse image is then segmented using a customised K-means
clustering method tuned to produce 3 to 5 clusters. The reason for this choice is that it
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Figure 2: 1D view of combined Gaussian masks for the separate colour bands.

represents a reasonable number of main regions that a human observer may perceive when
viewing an image. The segmented clusters are then restructured by rejecting some of
their pixels in order to isolatecore clusters, i.e. patches in which the pixels are definitely
associated with the same region. The purpose of this is to remove noisy pixels from
the region and reduce the risk of inaccurate features. To derive core clusters from the
initial clusters, we need to fuzzify the classification result obtained after the K-means
segmentation of our8m blurred image[11]. We first compute the standard deviation�c
of each cluster region<c; c = 1; ::; C givenC clusters. Then, we assign to each pixeli, a
confidence,̂pic, with which it may be associated with each cluster:

p̂ic �

�2
c

di2
c
+�2

cPC
k=1

�2
k

di
2

k
+�2

k

8i;8c (2)

wheredi
2

c is the squared distance of pixeli from the mean of cluster<c in Luv colour
space. Each core cluster is formed from the pixels that can be associated with it with a
confidence of at least80%, i.e. i"<c iff p̂ic � 0:8. Figure 4 shows an original image, its
8m smoothed image and both the initial clusters and then the derived core clusters. The
reduction of the original clusters into core clusters fulfils our goal of extracting a smaller
representative group of pixel, coherent in both their colour and local texture properties.

3.1 Extracting Colour and Colour Texture Features

To compute cluster region statistics we use those pixel values in the original non-smoothed
image whose addresses correspond to the core cluster locations in the8m smoothed im-
age. It is important not to use the pixels of the8m smoothed image directly because the
blurring of a coloured object in one image may not match the blurring of a similar colour
object in another image due to differences in the colours in the neighbourhood of those
objects in their respective images. We ignore the luminance band to remove the effects
of variable illumination and use only the chromaticity channelsu andv. The mean and
variance of each region in each band is computed and stored in a 4-component colour
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Figure 3: A real image and its perceptual (top) and Gaussian smoothing (bottom) corre-
sponding to1, 4, and8 meters of viewing distance, from left to right.

feature vector. Hence, givenS(x; y) as the8m smoothed image withC cluster regions,
andI(x; y) as the original image, then:

�uc =

Z Z <c"S(x;y)

I(x; y)dxdy , �2uc =

Z Z <c"S(x;y)

(I(x; y)� �uc)
2dxdy (3)

Similarly for thev chromaticity band, we obtain[�vc,�2vc] resulting in the colour feature
vector~fuvc = [�uc; �

2
uc; �vc; �

2
vc].

However, colour features alone are not enough to result in the desired retrievals. A
query made using a region representing a green car should not return images of trees. We
augment our colour features by the discriminatory power of texture. Gabor filters have
been widely used as a model of texture for image interpretation [12]. They are designed to
sample the entire frequency domain of an image by varying the bandwidth, shape, centre
frequency and orientation parameters. In the spatial domain, a Gabor filter takes the form
of a complex sinusoidal grating oriented in a particular direction and modulated within a
Gaussian envelope. The convolution filter located at(x0; y0) with centre frequency,!0,
orientation with respect to thex-axis,�0, and scales of the Gaussian’s major and minor
axes,�; �, is defined by [14]:

g(x;y) = e��[(x�x0)
2=�2+(y�y0)

2=�2] e�2�i[u0(x�x0)+v0(y�y0)] (4)

Figure 4: Left to right - original image, perceptually smoothed at8m, segmented into 4
clusters, and finally core clusters of the segmented image at 80% confidence.
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This filter has a modulation of(u0; v0) such that!0 =
p
u20 + v20 and the orientation of

the filter is�0 = tan�1(v0=u0). Thus, each Gabor filter is tuned to detect only a specific
local sinusoidal pattern of frequency!0, orientated at an angle of�0 in the image plane.
The Gabor bank of filters applied in this study contain16 filters: four different frequencies
at0:36, 0:18, 0:09, and0:05 cycles/pixel, and four different directions at0�, 45�, 90�, and
135�. The transform is performed as multiplication in the frequency domain. We take the
mean(�Guc; �Gvc) and variance(�2Guc; �

2
Gvc) responses over each image regionc in

chromatic planesuv as our Gabor colour texture features in vector~fGc. Since there are
16 filters and two colour planes, we will have a64 element feature vector per region:

~fGc = [�Guc1 ; �
2
Guc1 ; �Gvc1 ; �

2
Gvc1 ; :::; �Guc16 ; �

2
Guc16 ; �Gvc16 ; �

2
Gvc16 ] (5)

To reduce the dimensionality of the feature vector we perform principal component anal-
ysis on the64 Gabor features, similar to [13], and reduce them to16 only (call them~fgc)
which represent98% of the variance within the64 dimensions. We then fuse the colour
and colour texture feature vectors to form~fc as our final20 component feature vector for
the cluster regionc, i.e. ~fc = ~fuvc [ ~fgc. As the feature vector components come from
different parameters, we also normalise the values to lie between0 and1.

4 Experiments and Results

Here we present the results of typical image queries using our fused feature vector~fc. We
also examine the performance of the perceptual features when used exclusively, i.e.~fuvc
and ~fgc acting on their own. Finally, we compare the correct number of retrieved images
with and without using the multi-feedback retrieval and ranking process. A major hurdle
in comparing one CBIR work against another is the difficulty in testing them on the same
database. We report the accuracy of our results by considering the number of correctly
retrieved images (i.e. they contain objects similar to the query judged subjectively) in the
final set of 10 images. This basic measure is similar to that used in Pisaro [8].

Our database consists of 280 images of mainly outdoor scenes of buildings, people,
animals, forests, and so on. These are segmented into3 to 5 regions resulting in a total of
1061 regions. Features are extracted and stored in the database for all the regions. As new
images are added, their feature vectors are simply appended to the existing feature set.

4.1 Retrieval Performance of Perceptual Features

A search consists of the comparison of the query vector against all other feature vectors
in the database using theL2 measure and then sorting them in order. Figure 5 shows the
results of three queries and the best 10 ranked results, including the query image itself
as the first image as expected. In each case we obtain 9 out of 10 images which are
subjectively similar. In the “people” search we obtain an image of leaves in the 10th
position which seems to be very similar in colouring to the other images. The same is true
for the building image that appears in the “leaves” query. The most strange retrieval is the
two elderly ladies in the “sky” query for which we have not yet found a clear explanation.
The results overall show90% accuracy in retrieving images that are of direct relation to
the query. In all our experiments we had 7 to 9 correct images out of 10 giving an average
hit rate of80% which compares extremely well with other works[4, 5].
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Figure 5: Three different image retrieval examples are shown (people, leaves, and sky from top to bottom). The first image on the left in
each example is the image from which the query vector originates. Other spatially close vectors in the query image are then used in the
multi-feedback process for ranking refinement.
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4.2 Exclusive Feature Performance

To monitor the importance of the features, we made queries first using only the colour
features and then using only the colour Gabor texture features. In each case the results
were almost always not as good as when using the combined feature query. Hence, in the
next figure we show a more interesting result. The top half of Figure 6 shows the top 10
ranked results, from left to right, after a colour only query. The subject matter is “leaves”
and the system has returned 6 correct images. In the lower half of Figure 6 we can see the
same query but using our colour Gabor texture features only. This time the system has
retrieved 9 correct images which matches the number retrieved by our fused colour and
colour texture query (compare with Figure 5). However, the fused query has achieved a
better ranking of the selected images both by their subjective similarity, e.g. the building
image is ranked lower by 2 places, and by their colour similarity, although this may not
be distinguishable or important to the human observer across the overall results.

4.3 Performance of the Multi-Feedback Process

The proposed multi-feedback subset retrieval and ranking process has three levels in our
implementation with 30 images retrieved at the first level. Of these, 20 are selected at the
second level, and at the third level, the best 10 of the 20 are returned as the final answer.
Table 1 shows the number of correct retrievals and the progressive refinement and ranking
of the results in the top 10 at each level of feedback, i.e. out of 30, 20, and 10 at levels
1, 2, and 3 respectively. So for example, for the first query “sky”, we obtained 6 correct
answers in the top 10 at level 1, 8 correct answers at level 2 when a secondary region was
used, and 9 correct answers at level 3 when a third common region was deployed. Now
consider the results in level 1 only, with the first 10 out of 30 of retrieved images. This
is equivalent to having the multi-feedback process switched off. The results vindicate
the importance of feedback and refinement. The retrieval performance of our simple 20-
component feature vector, including the multi-feedback refinement, on our database on a
SUN Ultra 10 is in near real-time.

The vector-based approach easily facilitates the mechanism for weighting the colour
and texture features to influence the search results. Each vector component in our sys-
tem is weighted where the weights by default are set to1:0 but can be user-adjusted to
vary between0:0 and10:0. However, there are only two weight definitions: the chro-
maticity weighting,wuv , applied to bothu andv, and the Gabor weighting,wg , which is
applied uniformly to all Gabor features. This allows the user to weight the search towards
colour or texture as appropriate, in the same way that we demonstrated the power of each
perceptual feature set earlier when we alternatively set each weight to0:0 and1:0 (i.e.
Figure 6).

Multi-feedback Ranking and Retrieval
Query Sky Leaves Building Tiger Grass People
Level 1 7 9 8 6 7 7
Level 2 8 9 9 7 8 9
Level 3 9 9 9 7 8 9

Table 1: This table shows the number of correct results in the top 10 retrievals at each
level of the multi-feedback subset retrieval and ranking process.
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Search by Colour Features only.

Search by Colour Texture Features only.

Figure 6:Top - Image retrieval using colour features only.Bottom - Image retrieval using
colour texture features only. The top-left image in each half is also the query.

5 Conclusions

A method of deriving colour and colour texture features for image indexing and retrieval
based on perceptual regions in the image was presented. Furthermore, a multi-feedback
subset retrieval and ranking mechanism was designed to improve the performance and
similarity retrievals. This allowed images which had more common regions to the query
image to be found and ranked accordingly. Unlike most other CBIR techniques, we did
not use colour histograms although this is quite easily possible since we too deal with
identified regions, even though they are perceptual regions. One limitation of the current
approach is the lack of shape information. We have not carefully examined how much
shape information there is in the pre-segmentation perceptual regions, but it is clear that
after segmentation and core clustering there is too much deformation to allow the deriva-
tion of shape features. Our emphasis instead has been on an alternative and novel way
of deriving search features based on the perceptual observation of images by the human
visual system.
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