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Abstract

We address the problem of non-rigid motion and correspondence es-
timation in 3D images in the absense of prior domain information.
A generic framework is utilized in which a solution is approached by
hypothesizing correspondence and evaluting the motion models con-
structed under each hypothesis. We present and evaluate experimen-
tally �ve algorithms that can be used in this approach. Our experi-
ments were carried out on synthetic and real data with ground truth
correspondence information.

1 Introduction

Experimental comparison of algorithms for non-rigid motion and correspondence
estimation is highly important. A vast amount of relevant work published in the
last decade builds on heterogeneous ideas, yet no single algorithm is known to
provide a robust solution under a variety of conditions. In this paper we attempt
to cross-investigate a number of algorithms { some well-established ones as well
as some promising recent approaches { with the aim of identifying the ideas that
may lead to major improvements of current methods of non-rigid motion analysis.

Why is it desirable to further improve current motion analysis techniques? The
answer is: some developing applications impose much greater requirements for mo-
tion analysis than what current methods are capable of. While speci�c application-
dependent techniques, e.g., left-ventricular surface motion tracking [10] or cerebral
cortical surface correspondence estimation [13], have proved to be very success-
ful, in general very little is known about how to robustly recover unrestricted
non-rigid motion from observations. The potential bene�ts of such knowledge are
manifold. It may further help the analysis of 3D biomedical images by quantifying
what is currently perceived only visually as a motion �eld between correspond-
ing points. It may facilitate the segmentation of multiple motion by �ltering out
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motions with distinct characteristics. Another interesting potential application is
decreasing the bandwidth in transmission of dynamic image sequences: if compact
representation of the motion between successive images could be found, only this
component would need to be transmitted instead of full images.

The goal of a robust non-rigid motion estimation algorithm can be seen as the
following: in the absence of any prior information other than 3D images before

and after motion, recover some meaningful compact representation of the observed

motion. Let us point out the three essential requirements of this scenario:

1. Correspondence between points, or other features, in images is assumed un-
known. As part of its job, the algorithm must recover the correspondence,
but it is not the only objective of the algorithm.

2. No prior shape information, nor any information about the physical proper-
ties, is available.

3. The algorithm must not be limited to speci�c points in objects with some
favorable properties.

The problem of unknown correspondence lies at the heart of non-rigid motion
estimation. In some cases, it may be decoupled from the motion estimation, in that
the results of an algorithm providing only correspondence can be later used by a
motion estimation algorithm that assumes known correspondence. For this reason
we also consider the \correspondence only" algorithms in the current investigation.
The second requirement prompts us to leave out the physically-based methods
as well as the methods utilizing global shape topology. The rationale here is
that using a model from an inappropriate domain may lead to erroneous model
estimation, which would severely hamper motion analysis. Finally, the requirement
for applicability to arbitrary points rules out the techniques that are looking for
\feature points", such as points with high curvature, etc.

Comprehensive coverage of non-rigid motion estimation techniques can be
found in two literature reviews published in the mid-90's [1, 9]. Experimental
cross-evaluation of such techniques, to our knowledge, is the �rst of a kind. Due
to space constraints and heterogeneity of existing algorithms we are only able to
cover a small subset thereof. Nonetheless we hope that the �ndings of this work
provide a useful insight in development of more advanced techniques.

2 Generic Framework for Non-rigid Motion and

Correspondence Estimation

The abstract setting of the problem of non-rigid motion and correspondence esti-
mation can be seen as follows: given two sets of n-dimensional points: P = fpkg
and P 0 = fp0kg, for each point of interest pi 2 P �nd the index j of the corre-

sponding point p0j and the motion function s(p) such that p0j = pi + s(pi). For 3D
images, dimensionality of p is obviously 3. In the classical rigid registration prob-
lem correspondence is trivial, i.e., i = j, and the motion function s(p) = Rp + t
for some rotation matrix R and translation vector t. In non-rigid registration cor-
respondence is continuous, and the motion function is either a�ne with full 12
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degrees of freedom or non-linear, i.g., [11]. Even a non-linear function, however,
may not be powerful enough to accurately model the transformation, or it may
require prohibitively large time to compute. To cope with this predicament, a local

motion function si may be sought for each point of interest.
It is known from Helmholtz mechanics that in�nitesimal transformation can

always be represented as a composition of translation, rotation and non-rigid trans-
formation: s(p) = Kp + t, where K = R + D or K = RD, D being a non-rigid
transformation matrix. The recovery of R and D is possible, however, only for
a symmetric (in the additive representation), or a positive-de�nite (in the multi-
plicative representation) matrix D [4].

In an attempt to overcome the limitations on the kind of deformation, the
local topology of an object can be used. In order to do so, we make a simplifying
assumption that the objects under investigation are surfaces in 3D. The parametric
representation of a surface can be recovered by �tting a second degree polynomial
[2, 8], and the di�erential-geometric information thus obtained can be used to
estimate motion and correspondence.

Consider the point p0 on S, the surface before motion. The problem of �nding
the counterpart of p0 naturally precedes modeling the motion between the two.
Thus the generic procedure of estimating correspondence and motion can be seen
to have the following two steps:

1. Find the point p0k on S
0 so as to minimize some correspondence errorEc(p0; p

0
j)

among some candidate points p0j .

2. Recover the motion model between p0 and p0k.

One pair of corresponding points may not be enough to uniquely recover the
motion. In this case one can consider small neighborhoods around the points
of interest and model motion between these neighborhoods. The correspondence
error function can also be formulated in terms of the neighborhoods in question.

Within this abstract framework, the di�erences between individual algorithms
lie in the kind of the correspondence error function Ec and in the estimation of
the motion model (if any) given the corresponding neighborhoods of interest.

3 Brief Review of Selected Algorithms

We now present a brief review of the algorithms selected in our study. Our goal
here is to highlight the features of these algorithms which, in our opinion, have
critical impact on their performance in our evaluation. Details can be found in
the cited sources.

3.1 Iterative Closest Point Algorithm

The Iterative Closest Point (ICP) algorithm was developed by Besl and McKay
for registration of 3D shapes [3]. It has become a popular tool in 3D registration
and has received some extensions [5, 6].

To adapt the ICP algorithm to our generic framework we proceed as follows.
Let P be the set of points in the neighborhood of the point of interest p0 on S,
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and let X be the set of points around a candidate point p0j on S0.1 We run the
ICP algorithm on P and X until convergence (usually not more than 5 iterations),
and use the resulting registration error as the value of Ec(p0; p

0
j). The process

is repeated for all other candidate correspondence points. The point with the
smallest registration error is chosen as the correct correspondence, and the rigid
transformation associated with this registration is chosen as the motion model.

Despite the use of the rigid model, the main advantage of the ICP algorithm
is that instead of assuming a trivial correspondence it proceeds iteratively, by
selecting the subset of the closest points, estimating motion, and applying the
motion to the initial point set P at each iteration. This idea is similar to Ullman's
incremental rigidity scheme [12] known for its ability to approximate small non-
rigid deformations.

Since this algorithm has been used in a variety of applications it was interesting
to investigate its performance in our framework.

3.2 Homothetic Motion Algorithm

A number of algorithms naturally �tting into our generic framework has been pro-
posed for restricted classes of non-rigid motion2. The homothetic motion repre-
sents uniform expansion/contraction of the surface, characterized by the stretching
coe�cient �. Since our neighborhoods of interest are, in general, small, homoth-
etic motion may be a reasonably close approximation of the undergoing non-rigid
motion. The optimal stretching coe�cient can be computed from the values of the
Gaussian curvature in the neighborhoods � and �0 before and after motion [7]:

� =

sP
i2�;�0 KiK 0

iP
i2�0(K

0
i)
2
:

Once the stretching coe�cient is estimated, the correspondence error can be com-
puted as:

Ec =
X
i2�;�0

(Ki � �2K 0
i)
2:

The candidate point with the smallest error is selected as the true correspondence,
and the respective � as the motion model.

3.3 Unit Normal Algorithm

Another di�erential-geometric algorithm is based on the relationship between the
unit normals before and after small deformation3. Let n and n0 denote the unit
normals to the surface before and after deformation. Then the following relation
is known from classical di�erential geometry [14]:

n0 = n� n� rot s; (1)

1The notation of [3] is directly followed in this exposition. Our implementation uses the
original quaternion formulation without acceleration.

2A more detailed discussion on this topic can be found in [9].
3The original version of this algorithm was proposed in [8]. We present here { without

derivation { a modi�ed, computationally more e�cient version.
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where rot s denotes the curl of the motion function s. Assuming the a�ne motion
function

s = au+ bv + c;

one can de�ne the error function as the discrepancy of Eq. (1). For the neighbor-
hood of interest, this error can be shown to be:

� =
P

i2�;�0

�
�ni +

1

Ei
(ni � a)(ru)i +

1

Gi
(ni � a)(rv)i

�
: (2)

Minimizing the squared error (� � �) over the neighborhood around the point of
interest, one can obtain the system of linear equations in which unknowns are the
motion parameters a and b:�P

i2�
1

Ei
nin

T
i 0

0
P

i2�
1

Gi
nin

T
i

��
a
b

�
= �

�P
i2�;�0

1

Ei
(�ni � (ru)i) niP

i2�;�0
1

Gi
(�ni � (rv)i) ni

�
: (3)

The unit normal algorithm proceeds as follows:

1. Fit second degree polynomials z(x; y) to 3D data tuples (xi; yi; zi) in the
neighborhoods of interest before and after motion.

2. By letting u � x, v � y, construct the parametric representation r(u; v) �
(u; v; z(u; v)): In this representation compute the partial derivatives ru �
(1; 0; zu) and rv � (0; 1; zv), unit normals n = ru � rv=jru � rv j, and the
coe�cients of the �rst fundamental form E = (ru � ru), G = (rv � rv).

3. Decompose the left-hand side matrix using SVD or LU decomposition4.

4. For each candidate correspondence point p0j on the surface after motion,
back-substitute the right-hand side vectors obtained from the neighborhood
of p0j (�n is the only parameter that depends on the surface after motion).
Evaluate the hypothesis by plugging the motion model (aj ; bj) in Eq. (2).

5. Select the motion model and the correspondence with the smallest error.

3.4 Amini's Algorithm

Amini and Duncan addressed the problem of estimation of correspondences in the
sequences of 3D images of left ventricle [2]. Their algorithm is inspired by the
idealized thin-plate model, that can be adapted to modeling bending deforma-
tion, and by the conformal motion model corresponding to non-uniform stretching
deformation. The combined bending/stretching energy is de�ned as

�ik = �bef((�1)i � (�0
1
)k)

2 + ((�2)i � (�0
2
)k)

2g

+ �st

��
Ei

E0

k

� Fi

F 0

k

�2
+
�
Ei

E0

k

� Gi

G0

k

�2
+
�
Fi

F 0

k

� Gi

G0

k

�2�
;

(4)

where �1 and �2 are the principal curvatures, E;F;G are coe�cients of the �rst
fundamental form, �be and �st are non-negative constants.

4Notice that the expression nin
T

i
denotes an open product of 3D vectors which is a 3 � 3

matrix block.
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For the �xed correspondence hypothesis j the error is computed by minimizing
the energy over the neighborhood of p0j and summing over the neighborhood of p0:

Ec =
P

i2� min
k2�0

j

�ik: (5)

The hypothesis minimizing the error (5) is chosen as correct correspondence.

3.5 Wang's Algorithm

The algorithm of Wang et al. [13] was proposed for 3D surface correspondence,
with application to matching of brain images. The algorithm combines Euclidean
distance information with the di�erential-geometric information. The latter, unlike
some of the previous methods that require 3D data, is estimated from 2D images.

The error function utilized by Wang's algorithm is the following:

Ec = dij � nij � fij : (6)

The Euclidean distance measure dij is de�ned as

dij = 1 +
q
(xi � xj)2 + (yi � yj)2 + (zi � zj)2:

The unit normal match measure nij is de�ned as

nij = 2� ni � nj :

The feature match measure fij is a heuristic, curvature-based measure applicable
only to brain images. To make this algorithm suitable for our generic framework,
we have de�ned a similar measure based on Gaussian curvature:

fij = 1 + log
10

�
jKi�K

0

j j

jKij
+ 1
�
:

The diacritical feature of Wang's algorithm is the combination of three distinct
modalities of correspondence measure in a single multiplicative error function.

4 Experimental Results

Our experimental setup consists of three tiers:

1. Arti�cial motion on analytical shapes. The shape is a 25�25 quadric 0:1u2+
0:1v2 with 49 points of interest evenly spaced with step 2 around its apex.
A�ne motion au + bv with parameters a = (0:001; 0:002; 0:003) and b =
(0:003; 0:001; 0:002) is applied after an initial rotation by 5� and translation
by 5% of the magnitude of the (x; y; z) vector of the point of interest. The
a�ne component is magni�ed with the parameter � in the range of 1 to 1000.

2. Arti�cial motion on real shapes. The shape is a facial range image obtained
from a Cyberware scanner. Motion is applied in the same way as above.
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(a) (b) (c) (d)

Figure 1: Examples of 3D shapes with correspondence information: (a), (b) { 3D
images before and after deformation; (c), (d) { visual images with correspondence
information before and after deformation.

3. Real motion on real shapes. Motion between a pair of facial range images
is estimated. The ground truth correspondence is obtained from the visual
images of the same shape with color markers (invisible to the range scanner)
applied at points of interest. The examples of 3D shapes and their visual
images are given in Fig. 1.

In the arti�cial motion experiments the true correspondence is trivial. Given
the computed correspondence (uc; vc), and the true correspondence (�u; �v), the
correspondence error is de�ned as

p
(uc � �u)2 � (vc � �v)2.

One can see from Figures 2 and 3 that the algorithms exhibit di�erent behavior
with respect to the motion magnitude. The error of the homothetic and the unit
normal algorithms increases with greater motion magnitude, whereas the other
three algorithms are much less a�ected by it. One can also notice similarity of
the accuracy of the ICP and Wang's algorithms { it turns out that the latter's
error function is dominanted by the distance component. Amini's algorithm had
persistent problems in both experiments. This may be due to imbalance of its error
function consisting of two distinct terms representing di�erent types of motion.
The balance between the terms can vary even across the same data set, and we
had to set both weights to 1 to avoid unjusti�ed bias.

The real motion experiments were carried out on 7 data sets based on sequences
of 3D images from three subjects. Data sets 2 and 4 represent relatively large
motion. In our experiments the 180� 524 real images were sub-sampled by 2, and
the search window of size 7 was used.

Three numerical criteria were used for evaluation. The correspondence error

was de�ned earlier in this section. The relative image error is computed as
jj�p0�p0cjj
jj�p0�p0jj

;

where p0 is the point of interest before motion, �p0 is the true corresponding point,
and p0c is the computed corresponding point. The image error improvement ratio

is computed as
jj�p0�p0

1�1
jj�jj�p0�p0cjj

jj�p0�p0
1�1

jj ; where p0
1�1

is the point after motion under
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Figure 2: Comparison of the algorithms on the analytical shape and arti�cial
motion.
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Figure 3: Comparison of the algorithms on the real shape and arti�cial motion.

trivial correspondence. It shows the relative improvement of error over trivial
correspondence. This measure is only applicable when the true correspondence is
not trivial; however, the latter occurs very rarely.

The results are presented in Figure 4. One can see that the unit normal al-
gorithm is signi�cantly more robust than the other 4 algorithms. On all but one
dataset it exhibits the smallest correspondence error, and on all datasets the small-
est relative image error and the largest improvement ratio. Also noteworthy is that
none of the algorithms is even close to a sub-pixel correspondence error reported
on several occasions in biomedical image registration literature. This signi�es that
the setup of the non-rigid motion/correspondence estimation for arbitrary points
of interest is inherently more di�cult.
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Figure 4: Comparison of the algorithms in the real motion, 7 data sets.

5 Conclusions

Among the �ve considered algorithms, the unit normal algorithm seems to be
the most robust, especially on real data. Its rigorous di�erential-geometric back-
ground is appealing, although it remains to be seen how critical the small motion
assumption is on real data. The relative strength of Wang's algorithm suggests
that multiplicative error function is a good idea for combining characterization of
di�erent factors. The ICP algorithm can still be not the worst choice, although it
is the slowest of the �ve.

Overall, the accuracy of current algorithms has much room for improvement.
The observed image error constitutes at least 50% of the motion, and the im-
provement over the trivial correspondence is it at most 40%. Special e�ort must
be made to perform intelligent hypothesis search: the simple window search used
in our experiments has problems with large motion due to quadratic growth of the
computational e�ort.

The future work we envision in this area would address more advanced methods
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of motion estimation and building motion models more powerful than the a�ne.
Another potential direction of research is incorporation of smoothness assumption.
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