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Abstract

Combining different and complementary object models promises to increase
the robustness and generality of today’s computer vision algorithms. This
paper introduces a new method for combining different object models by de-
termining a configuration of the models which maximizes their mutual infor-
mation. The combination scheme consequently creates a unified hypothesis
from multiple object models “on the fly” without prior training. To validate
the effectiveness of the proposed method, the approach is applied to the de-
tection of faces combining the output of three different models.

1 Introduction

Any object model has its own strengths and weaknesses depending on the context and
the dynamics of the environment. This becomes evident in virtually any model-based
computer vision task such as object detection, tracking or recognition. As for recognition
there exist a considerable number of highly successful algorithms. Each of the approaches
however has its own inherent limitations and weaknesses. Similar observations hold for
tracking and detection of objects. In this paper we argue that in order to overcome such in-
herent limitations one has to integrate and combine different, complementary approaches
and object models. While there are many computer vision algorithms for computing var-
ious kinds of object models, work on the combination of different models is still in its
infancy. Since no single model is robust and general enough to cover all possible environ-
mental conditions, their combination promises to increase robustness and generality.

The ultimate goal of the proposed approach is to overcome the limitations of individ-
ual models by combining multiple models at different levels. In order to integrate and
combine complementary object models, this paper proposes a general framework based
on mutual information which is used to measure mutual agreement between different ob-
ject models. Rather than learning a static integration scheme, the algorithm determines
model configurations which maximize agreement among the employed models and the
current image data. Since the image data is used directly, the integration mechanism
dynamically adapts to environmental changes for example in lighting conditions. The
framework therefore allows to combine different models dynamically and ’on-the-fly’.
This makes the approach general and easily extendible to new object models.
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The main focus of this paper is the important and interesting question of how to com-
bine different object models effectively when facing a dynamic, real-world environment.
The remainder of this paper is organized as follows: After a short review of related work
section 2 introduces the general framework for model combination based on mutual infor-
mation. Section 3 describes a case study in which human faces are detected by combining
three distinct face models. In section 4 the robustness of the combination method is
demonstrated. We also give an example of how the algorithm selects a skin color model
which is most appropriate for the current environmental conditions.

1.1 Related Work

Probably the most common approach to integrate information is to accumulate all re-
sponses (raw data or features) into a single vector. Taking a number of these vectors,
standard machine learning techniques [4] can be used to learn a joint probabilistic model.
Bayesian approaches can be taken to statistically model dependencies between the dif-
ferent data sources and sensors. However, the amount of training data required may be
prohibitive [2]. [1] proposes a hierarchical mixture of experts [7] in which mixtures of
appearance models are learned for the classification of objects. The common drawback
of these approaches is that the integration is static in the sense that we cannot change the
weighting of responses dynamically depending, for example, on their usefulness or the
environmental conditions.

Combining different classifiers is a standard problem in pattern recognition (see for
example [15, 8, 6]). Typically different classifiers are trained individually and their pa-
rameters are fixed thereafter. It is the combiner’s task to learn and choose the appropri-
ate combination mechanisms depending on particular situations. In that sense only the
combiner itself may be able to increase the robustness and generality of the individual
classifiers. However, the results will most often be sup-optimal since the combiner does
not have access to the classifiers themselves and cannot adapt their parameters. As before
the combination scheme is fixed and static during runtime.

2 Hierarchical Model Combination Using Mutual
Information

This paper proposes a general method for the combination of multiple object models
using the information-theoretic principle of mutual information. Mutual information has
been used previously in computer vision, as for example in medical image registration
[14], for selection of most discriminant viewpoints of objects and in audio-visual speech
acquisition [11]. As detailed below, mutual information can be used to measure the mutual
agreement between two object models. In order to combine multiple models a hierarchy
of pairwise model combinations is used.

The mutual information of two random variables
�

and � with a joint probability
mass function �������	��
 and marginal probability mass functions �����
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Here, the probabilities in expression 1 can be directly derived from a pair of distinct
visual object models. To undermine the relevance of mutual information in the context
of object model combination, we briefly refer to the well-known Kullback-Leibler diver-
gence. The KL-divergence between a probability mass function �������	��
 and a distinct
probability mass function � �����	��
 is defined as:
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Although the Kullback-Leibler divergence (also called relative entropy or information
divergence) is not symmetric and does not satisfy the triangle inequality, it is often useful
to think of it as a “distance” between distributions [3]. By defining � �����	��
 ������� 
 ������
 the
mutual information can be written as the KL-divergence between �������	��
 and ����� 
 ������
 :
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Mutual information therefore measures the “distance” between the joint probability����� �!� 
 and the probability � �����	��
 � �����

�������
 , which is the joint probability under the
assumption of independence. Conversely, it measures mutual dependency or the amount
of information one object model contains about another. As a result mutual information
can be used to measure mutual agreement between object models.

In the following we assume that for each subregion of the input image, each model
determines the probability that the object of interest is either present or absent. This
representation is very general and can be satisfied by nearly any object model. ����� 
 is
calculated based on the first object model and covers two cases, namely the presence of
the object ������� 
 or its absence �����
	 
 ����
 �������#
 , respectively. The probability ������

is derived from the second object model analogously, also with the two described cases.
Finally, for the joint probability ����� �!� 
 both models and all four cases are taken into
account.

Typically, the object of interest can be associated with a characteristic parameter range
of an object model. For example, in the case of a color model, the parameter range may be
given by a particular subspace of the total color-space. Note that each parameter configu-
ration results in distinct probabilities ����� 
 and ������
 and consequently, in a distinct mutual
information value. Therefore, one can determine a configuration ����� ���
� 
 which maxi-
mizes mutual agreement between the employed models and the input data by maximizing
the mutual information over the object-specific joint parameter space:

��� � ��� � 
 ������� ����� � � ��� ��
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with � and � describing the object-specific parameter space of a model pair. For
example the parameters of the facial shape model in the experiments described below are
the size and the location of the face within the image. By maximizing mutual information
with a second, complementary face model the algorithm detects and locates faces in the
image.

At each stage of a hierarchy, the algorithm computes a ranking of parameter config-
urations which maximize mutual information. This ranking is then used as input for the
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next stage in the hierarchy where mutual information can be used again to find the best
combined parameter configurations. The resulting algorithm is modular and can be easily
extended to new object models.

color/shape

color

combinedcombined

shape template

template/shape

face
region

Stage 1

Stage 3

Stage 2

Figure 1: Multi-stage usage of maximization of mutual information for combining object
models

The hierarchical concept is depicted in figure 1 which shows the architecture used in
the case study described below. In this case study, the following three object models are
combined pairwise in order to detect human faces: a skin color model, a shape model and
a template matcher. In stage one the probability maps are calculated based on the color
model and the template matcher. Stage two combines the color model with the facial
shape model by maximizing mutual information. The template matcher and the facial
shape model are also combined in stage two. Finally stage three combines both results
again by maximizing mutual information.

Obviously other groupings would be meaningful as well. The proposed grouping
however ensures that the combined hypotheses on stage two can be represented as a single
condensed region of probabilities. This will be further explained in the next sections.
Also, it would be possible to combine all models in a single maximization step. However,
using pairwise combinations enables the definition of separate and independent parameter
constraints for each pair which reduces the size of the joint parameter space and therefore
speeds up sampling.

3 Case Study: Experiments on Face Detection

Face detection is a well studied problem in computer vision. The diversity of approaches
ranges from neural networks [10], over support vector machines, use of facial features and
geometric constraints, density estimation to clustering. These and other approaches have
reached impressive detection rates depending on the respective context. Despite these
considerable successes in face detection one can identify specific strengths and weak-
nesses of the underlying models. For example the approach of Rowley et al. [10] only
detects frontal upright faces. Schneiderman and Kanade [12] introduce a different ap-
proach based on wavelet coefficients which can handle profile views. They explicitly note
that particular models (i.e. use of eigenvectors) seem to be more appropriate for frontal
faces whereas their approach based on wavelet coefficients is more successful on profiles.

Rather than to refine any of the above approaches we argue that one should focus on
the combination of the most successful and promising approaches in order to overcome
their inherent limitations. As stated in the introduction, this paper therefore focuses on
the combination of different models. In the experiments described below the limitations
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of the facial models used are widely understood. In this respect, they are well-suited to
highlight the utility of the proposed integration scheme.

3.1 Three models for face detection

Three simple models for face detection are used in the experiments described below: a
skin color model, a face template matcher and a shape model. Note that taken together,
the three models embody desirable and complementary properties for face detection. In
the experiments individual models are challenged in order to analyze the robustness of
the proposed combination mechanism.

The first model is a Gaussian skin color model (see for example [9]). More specif-
ically the color model is represented by a single Gaussian of the hue, saturation and in-
tensity values with diagonal covariance matrix. The model’s parameters are trained on
several images using the maximum likelihood principle. Several such skin color models
are trained for different environments such as to cover various indoor and outdoor illumi-
nation conditions. Each of these models allow to calculate probabilities of skin color for
every pixel in an image.

The second model is based on template matching. A face template is correlated with
all local subregions of the image having the expected size of the face. The current imple-
mentation uses several templates of frontal faces from different people. The correlation
results are normalized and projected onto probabilities using a sigmoid function. Thus,
the probability maps generated for each template represent the probability distribution of
face centers in the image.

As a third model, facial shape is used. Essentially, this model imposes the constraint
that the face region be compact and elliptical. The parameters are the position of the face
region (given in pixel coordinates) and the two main axes of the ellipse. The model could
be extended by a fifth parameter, namely the rotation of the ellipse which has been omitted
in the following. The third model is implemented as an ellipse with high probabilities in
the center and decreasing probabilities towards the edges of the ellipse. Probabilities
outside the elliptical region are set to zero.

3.2 Illustration

This section describes the combination of the three face models in more detail illustrated
with an example. Figure 2 shows the original image with two people and the different
stages of the algorithm from left to right. As can be seen in figure 1, the combination
has three stages. In stage one the skin color model as well as the template matcher are
applied to the input image depicted on the left. The resulting probability maps are shown
with white indicating high probability. Face color probabilities are depicted on top, the
template matcher’s probabilities are shown underneath.

In the second stage, the skin color model is combined with facial shape and the tem-
plate matcher is combined with facial shape in parallel. That is, the mutual information
between the facial shape model and either probability map is maximized. To this end,
the joint configuration spaces of both model pairs are sampled. More specifically, the
algorithm samples over all possible face shape configurations and locations in the prob-
ability maps. In the current implementation, image locations are examined according to
their probability. The first 100 resulting maxima are visualized in figure 2 by drawing
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Figure 2: Combining three object models for face detection and localization

the facial shape at the associated locations. The upper image contains the ellipses from
the combination of the skin color model and the face shape model. The image below
corresponds to the combination of the template matcher and face shape. In this first rather
simple example, the results from both pairwise combinations are in close agreement, as
can be seen in the figure.

In the third and final stage maxima from combining color and shape are paired with
maxima from combining shape and template. More specifically, the mutual information
of all possible pairs of maxima is computed and used to rank each individual pair. The
final hypothesis is then visualized by intersecting the two shape models with the highest
mutual information. As shown in figure 2 on the right, the face of the right person in the
original image has been successfully located by this procedure.

Also the second person is extracted successfully since the algorithm is able detect and
locate multiple instances of the object of interest, in this case, multiple faces: closely
co-located maxima are merged into a single hypothesis of a detected face, while spatially
separated maxima indicate the presence of multiple faces. Here, the next few mutual in-
formation maxima are in the same location with similar but slightly different shapes, also
containing the face of the right person. Then, the first spatially separated maxima cap-
tures the location of the left face in the input image. Note that the actual value of mutual
information can be interpreted as a degree of confidence associated with the generated
hypotheses.
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4 Experimental Results

The section describes examples where the individual face models are challenged in order
to test the robustness of the proposed combination scheme. In a first scenario the face
color model is challenged by using a camera flash (see figure 3). In a second scenario
strong shadows on the faces cause difficulties for the template matcher (figure 4). The
results suggest in both cases that the proposed approach is robust enough to handle these
failures and weaknesses of individual models.

4.1 Using mutual information to combine face models

The input image of the first scenario is shown on the left of figure 3. The picture is
taken with the camera’s flash. There is also daylight entering through a window in the
background. As can be seen, the flash causes reflections on the window’s metal frame.
Since the flash strongly illuminates both faces the colors of both faces are distorted. Even
though the skin color model is challenged by this lighting condition the algorithm still
finds both faces as shown on the right of the figure.

Stage 1

input image

template probabilities

color probabilities combinations of color & shape

Stage 2 Stage 3

(...)

(...)

& shape
combinations of template
mutual information maxima

combined hypotheses
ranked by mutual information

mutual information maxima

Figure 3: Input image taken with camera flash which challenges the skin color model.
The combination with shape and template matcher allows robust detection of both faces

The intermediate stages of the computation as shown in figure 3 are discussed in the
following. The skin color probabilities show (stage 1) that the color model can only
capture the faces’ edges while large regions within the faces have zero probability (false
negatives). Note also the occurrence of some false positives along the shoulder of the left
person also caused by the flash. The template matcher’s probabilities indicate, however,
that it is not as much affected by the flashlight: regions of high probability coincide with
the actual locations of faces. In the next stage of the algorithm either probability map
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is combined with the shape model using mutual information. The combination of color
and shape results in several compact face regions. This underlines that the shape model
essentially injects the desired compactness property, which the color model could not
establish because of the flash. In this scenario, the combination of template and shape
yields several useful region candidates for the two faces.

The final hypotheses generated by stage three are visualized as described in section
3.2. The hypothesis with the highest mutual information captures the face location of
the right person. The face of the second person is contained in the next local maximum
of mutual information that is spatially separated from the first. In this experiment the
algorithm is capable to deal with the flash light situation robustly and overcomes the
inherent limitations of the color model.

Stage 1

input image

template probabilities

color probabilities combinations of color & shape

Stage 2 Stage 3

(...)

(...)

& shape
combinations of template
mutual information maxima

combined hypotheses
ranked by mutual information

mutual information maxima

Figure 4: Image with light from the side causing shadows on both faces. Even though the
face template matcher fails the two faces are detected by the combination scheme

Figure 4 shows another input image on the left. In this scenario the template matcher
is challenged since most of the light comes from the side creating significant shadows on
both faces. In this case the template matcher cannot handle the local shifts in intensities
caused by the shadows. Hence, the resulting probability map contains a large number of
false positives and false negatives. In this situation also the probability map of the skin
color model exhibits a large number of false negatives and false positives. Also the shirt
of the left person as well as a larger background region have non-zero probabilities.

Given this input, it is not surprising that combining template with shape in the second
stage produces many hypotheses in wrong places – but it also yields some, which are
correctly located over the actual faces. The combination of color and shape produces
many useful intermediate hypotheses, despite many false positives and false negatives.
This can be explained by the fact that the probability map of the color model still contains
enough information that can be put in agreement with the shape model’s compactness.
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Note that analogously to the template output, the color probability map is hard to interpret
directly, and only after the combination with the shape model the relevant information is
available.

As before, the mutual information among intermediate hypotheses is computed to
generate and rank the final hypotheses. Since this step eliminates disagreeing shape con-
figurations the information of the color-shape combination is preserved while ill-formed
hypotheses from the shape-template combination are discarded. It is also interesting to
note that the mutual information value associated with the final hypothesis is lower than
in the example before. This suggests that the value of mutual information can be used
directly as a measure of confidence for the generated hypothesis, since it is more difficult
to achieve agreement among all models in this scenario. As can be seen, the algorithm
deals with the shadow situation successfully and is able to detect both faces robustly.

In the above experiments we explicitly challenged each of the employed models in
order to show how the proposed combination algorithm can overcome limitations of indi-
vidual models. Most results reported in the literature however are describing cases where
the individual models perform well. It is therefore difficult to compare our results to
existing face detection systems. Furthermore a direct quantitative comparison is difficult
since employed benchmark face databases consist only of gray-scale images [10, 13]. The
emphasis of this paper is therefore the illustration of the novel mutual information-based
combination which attains increased robustness by employing multiple object models. To
this end, the face detection task serves as a demonstration case: multiple instances are
robustly detected even in scenarios which pose significant real-world challenges. As a
sidenote, mutual information may also be used for switching between different model
instances [5].

5 Conclusion and Future Work

This paper argues that even the most sophisticated stand-alone models have specific
weaknesses. However, the combination of different complementary models opens the
possibility to overcome limitations of individual models and to increase robustness with
respect to environmental changes. This paper therefore introduced a hierarchical frame-
work for combining different object models based on maximization of mutual informa-
tion. Object models are combined into a single unified hypothesis on-the-fly without need
for specific training. The framework thus allows to easily add, reuse, remove and replace
object models in a flexible manner.

In order to validate the proposed approach it has been applied to face detection. In
this experimental case study three face models (color, shape and template) are combined
on-the-fly in an hierarchical fashion. By deliberately challenging the weaknesses of the
individual models the robustness of the actual combination of models could be analyzed.

As the value of mutual information can be interpreted as a confidence measure. This
paper therefore showed how mutual information can be used to select the best available
color model depending on the environmental conditions. In the future we are planning to
use this for optimally initializing an object tracker. Mutual information may be used also
for the combination of models for recognition.
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