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Abstract

This paper explores a new method for analysing and comparing image his-
tograms. The technique amounts to a novel way of backprojecting an image
into one with fewer, statistically significant colours. When the method is
tested with the COIL-100 and MPEG-7 data sets it is shown to have a per-
formance that is as good as the best methods using fewer enteries than the
original histogram. Therefore it offers the potential for extending the use of
histograms into high dimensional feature spaces.

1 Introduction

Histograms are popular features for recognition and retrieval [20]. They form part of the
forthcoming MPEG-7 standard for image and video metadata and, despite their known
shortcomings as density estimators [26], they are popular because of their computational
simplicity.

When using histogram-based techniques, important issues are the selection of an ap-
propriate feature space, the quantization of the selected space, and the algorithm for com-
paring histograms. The choice of feature space is often problem specific (see [4] for an
example where colour spaces are compared). The choice of histogram quantisation (bin
size) is discussed in, for example, Scott [19]1. This paper examines the last issue, the
problem of comparing multidimensional histograms. We review the existing options and
suggest a new method for representing and comparing multidimensional histograms.

There are several reviews of histogram comparison methods ( [13,16] are examples).
The methods may be summarized as being based on inter-bin distances, intra-bin dis-
tances or feature distances. The inter-bin distances take the form

d(h,k) = g(∑
i

f (hi ,ki))/W (1)

whereh = [h1, . . . ,hn] andk = [k1, . . . ,kn] denote then-bin histograms,g and f are func-
tions that vary from method to method, andW is a scaling factor. Table 1 summarizes
these for a variety of inter-bin distances. For colour histograms formed in a non-invariant
colour space the effect of lighting variation is to shift the modes of the underlying distri-
bution. In this case inter-bin distances can be ineffective. The usual solution is to use an
intra-bin distance, a perceptual colour space or both. The best known intra-bin distance

1From which one deduces that many Computer Vision systems often operate with undersmoothed his-
tograms.

BMVC 2001 doi:10.5244/C.15.55



532

Distance type g(x) f (hi ,ki) W
Minkowski x1/p |hi −ki |p 1
Intersection x ki −min(hi ,ki) ∑i ki

Kullback-Leibler x hi loghi/ki 1
Jeffrey x hi log hi

mi
+ki log ki

mi
1

χ2 x (hi−mi)2

mi
1

Table 1: Some inter-bin distances: the Minkowski distance [22–24]; histogram inter-
section [24]; Kullback-Leibler divergence [12]; the Jeffrey divergence [16] in which
mi = hi+ki

2 and theχ2 distance [10].

is probably that used in the QBIC system [8] and allows for intra-bin similarity measures
via a weighting matrixA.

dQF(h,k) =
(
(h−k)TA(h−k)

)1/2
(2)

A is often chosen as[A]i j = 1−dhsv(hi ,k j) wheredhsv is the distance between the colour
of the bin centres [21]:

dhsv= 1−1/
√

5
(
(vi −v j)2 +(si coshi −sj cosh j)2 +(si sinhi −sj sinh j)2)1/2

(3)

An alternative, for one-dimensional histograms, is to use a cumulative distance

dM(h,k) = ∑
i
|ĥi − k̂i | (4)

whereĥi = ∑ j≤i h j is the cumulative histogram ofh, and similarly fork. Equation (4)
is related to the Kolmorgorov-Smirnov distancedKS(h,k) = maxi(|ĥi − k̂i |) but for both
distances there is no logical extension to two or more dimensions because there is no
unique ordering of histogram bins. Note that all the distances defined so far assume that
h andk have identical quantisations which can also be a significant restriction.

This restriction may be removed via the Earth Mover’s Distance (EMD) metric [17]
which measures the distance between distributions by calculating the minimum amount
of work to transform one into the other. EMD is based on a linear programming problem
in which P = {(p1,w1), . . ., (pm,wm)} is the first signature ofm clusters (for histograms
the clusters are usually the bins),Q = {(q1,w1), . . ., (qn,wn)} the second signature with
n clusters; andD = [di j ] a matrix wheredi j = d(pi ,q j) is the ground distance between
clustersi and j. The method computes the flowF = [ fi j ], wherefi j is the flow betweenpi

andq j , that minimizes the cost∑m
i=1 ∑n

j=1d(pi ,q j) fi j subject to the constraints:fi j ≥ 0;

∑n
j=1 fi j ≤ wi ; ∑m

i=1 fi j ≤ wi ; and∑m,n
i, j=1 fi j = min(∑m

i=1wpi ,∑
n
j=1wq j ) where1≤ i ≤ m

and1≤ j ≤ n. The first constraint allows the movement of mass fromP to Q and not
vice versa. The second constraint limits the amount that can be sent by the clusters inP
to their weights. The third constraint limits the clusters inQ to receive no more than their
weights; and the fourth constraint limits the total flow. Having solved this transportation
problem and calculatedF , the EMD is defined as the resulting work normalized by the
total flow:

dEMD(P,Q) =
∑m

i=1 ∑n
j=1d(pi ,qi) fi j

∑m
i=1 ∑n

j=1 fi j
(5)
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In practice EMD is slow to compute [3] so tends to be restricted to histograms with small
numbers of bins.

An alternative to using the full histogram is to compare features. One method uses
features that are the sum of the weighted distances of the first three moments of a distri-
bution [22]. Another computes the peaks of each histogram and compares these to give
a candidate list of similar images [6]. A more sophisticated recent alternative is to build
features based on modes in a local colour histogram [13]. An earlier method that has
relevance to the proposal in this paper assigns a signature,S(h), to every histogramh
by finding bins that are local maxima and above some threshold [27].S(h) is the set of
ratios of each local maximum to every other local maximum. The score for each compari-
son is created by a goodness function,Γ(hn,hd) =

(
∑{a,b}∈S(hd) ρ(a,b,hn,hd)

)
/ ‖S(hd) ‖

wherea andb denote bins in the histogram andρ is called the ratio-matchρ(a,b,h,h′) =
w(ln ra,b(h)− ln ra,b(h′)) wherew(x) is a narrow Gaussian with a maximum of 1 cen-
tered at 0 andra,b(h) is a ratio of the number of pixels in bina to the number of pix-
els in bin b in histogramh. The Gaussian is used to assign a high goodness value to
close matches. A confidence that a histogramhn contains an objecto is calculated as:
conf(hn,o) = maxhd∈Ho Γ(hn,hd) whereHo is the set of histograms stored in the database
as examples of objecto.

A related development is the generation of features from compressed colour his-
tograms [3] in which it is shown that, for a controlled database, retrieval performance
for compressed colour histograms is similar to that with a full histograms.

2 Histogram trees

In [27], [6] and [13] it is argued that it is the extrema, especially maxima, of histograms
that provide the most useful features. Thus any simplification of the histogram should
not enhance existing extrema: thescale-spacecausality principle [11]. There are sev-
eral possible systems that preserve scale-space causality in two-dimensions (see [9] for a
review) but few that extend easily toN > 2 dimensions especially when the scale-space
causality requirement is tightened to demand that no new extrema are introduced as scale
increases2. It is known in graph morphology [18] that alternating sequential filters by
reconstruction can be configured to satisfy the scale-space causality principle inN di-
mensions [2] and in these are termedsieves. Related filters are max/min-trees [18] and
watershed-trees [25]. Here we concentrate on max trees since we are interested in repre-
senting the peaks of a probability distribution.

Such a tree may be defined in any number of dimensions by considering a histogram
to be a set of connected voxels with their connectivity represented as a graph,G = (V,E)
where the set of vertices,V, are the voxel labels and the set of edges,E, represent the
adjacencies. If the set of connected subsets ofG containingr elements isCr(G) then the
set of connected subsets ofr elements containing a particular vertexx may be defined as,

Cr(G,x) = {ξ ∈Cr(G)|x∈ ξ}. (6)

Morphological operators and functions may be defined on these connected regions. For a
histogramh(x) and for each integerr ≥ 1, an operatorψr : ZV 7→ ZV can be defined over

2The usual, looser, requirement is that existing extrema should not be enhanced.
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Input Watershed Tree Max Tree

Figure 1: A one-dimensional histogram (left) and its associated watershed tree (center)
and max-tree (right)

the graph,G, where
ψrh(x) = max

ξ∈Cr (G,x)
min
u∈ξ

h(u) (7)

Applying this operator in a serial or recursive structure in which the output at a scaler, hr

is
hr+1 = ψr+1hr (8)

gives progressively simplified histograms. The differences between successive outputs
dr = hr −hr+1 have support regions that are connected sets of scaler−1. The boundaries
of these support regions are contours of the histogram. As scale increases the contour ex-
pands so that contours of a given scale will always be contained by a larger scale contour.
This containment may be represented by the edges of a scale tree [14,18]. Figure 1 shows
a one-dimensional example of the max tree. The leaf nodes represent the maxima. Parents
of these leaf nodes represent successively lower slices of the two modes. The node with
two children represents the slice where two peaks are no longer separated (a watershed).
The root node represents the complete signal. Also shown is a watershed tree [25] which
contains a subset of the nodes in the max tree but does not contain enough information
to reconstruct the original signal (unlike the trees in this paper which are a transform of
the signal). Inverting the signal or using the inverse to theψ operator would produce a

Figure 2: Images of Objects 5, 32, 67 and 100 from the Coil-100 database and their
associated scale trees.
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min-tree. When applied to images, max and min trees are less robust than trees built using
the bipolarM - or N -filters [9].

Figure 2 shows images of four objects taken from the Columbia Database (Coil-100)
[15] and their corresponding schematic max trees. Here the scale tree was computed via
an immersion simulation from a4× 4× 4-bin RGB colour histogram. The scale and
colour of each node in the tree represents the scale and mean colour of the flat-zone
associated with the node. Thus the root of the tree is the large grey sphere and the leaves
are shown as small coloured dots. The schematic version of the tree shown in Figure 2
is a two-dimensional simplification of the original three-dimensional max-tree. This is
created by determining the number of nodes on a particular depth and creating a spacing
table, which means that the edges of the tree visualisation do not overlap.

The tree in Figure 2 is a visualization tool – a property that has been exploited to
visualize high-dimensional surfaces in signal processing [7]. Note that the topology of
the tree encodes the histogram topology and so provides some invariance against lighting
variations that alter the location but not number of modes.

Where the histogram has only a few narrow modes the tree will have only a few nodes
but for broad under-smoothed histograms the tree may have many nodes. In these cases
it is useful to have a pruning algorithm to reduce the size of the tree while retaining the
important structures. For image trees such a pruning algorithm exists [14] but for his-
tograms, where the tree nodes represent equi-probable contours, it is simple to devise
pruning strategies that discard nodes on uni-modal branches until some specified tree size
is reached. In this way the scale tree provides a controllable level of detail with the sim-
plest trees identical to the watershed trees and the most detailed sufficient to reconstruct
the original histogram.

Figure 3: Top, object 26 at 0, 90, 180 & 270 degrees rotation and, bottom the associated
scale trees.

3 Results

To measure the effectiveness of these trees for image retrieval we first use the Columbia
Coil-100 Database, containing 7200 images. This database was originally created for
testing viewpoint invariant object recognition [15]. The database contains images of 100
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objects, each rotated through 360 degrees, with an image for every 5 degrees of rotation.
Several authors have built systems to solve the COIL-100 problem usually with some
degree of success (see [5] for an example). Figure 3 shows four images of object 26 from
the Coil-100 database and the corresponding schematic scale trees.
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Figure 4: Showing the maximum, upper quartile, median, lower quartile and minimum
NMRR computed over 100 queries for eight comparison methods using the COIL-100
set. Also shown, as crosses, is the mean NMRR. Note: The minimum NMRR is 0 in all
cases; the lower quartile NMRR is too small to plot for methods 1,6,7 & 8.

This is essentially an image retrieval problem, so to quantify the retrieval performance
we use the MPEG-7 Normalized Modified Retrieval Rank (NMRR) [1] in which theqth
query hasNG(q) ground truth images. Thenth retrieved ground truth image is assigned a
modified rankrn wherern = 1 indicates it is the top match,rn = 2 the second best match
and so on. A rank ofK + 1 is assigned to any ground truth retrievals that are not in the
first K retrievals on the basis that images that are not retrieved are all equally useless.K
is a number chosen to represent a reasonable depth into the database. Here we use the
MPEG-7 recommendationK = min(4NG(q),2maxq(NG(q))). The NMRR is defined as

NMRR =
MRR(q)

K +1/2−NG/2
(9)

where MRR(q) = µ(q)− 1/2−NG(q)/2 and µ(q) = ∑NG(q)
i=1 r i/NG(q) and NG(q). A

NMRR of zero indicates that all the ground truth images have been retrieved; an NMRR
of unity indicates that none of the ground truth images have been retrieved. A query for
each object was formulated by using the image of the object at zero rotation as the query
image and all images of the object as the ground truth set when searching through the
entire Coil-100 database.

Figure 4 gives the retrieval results for several conventional methods and three new
methods using the tree. In the first tree method (method 6 in Figure 4) a4× 4×4 bin
RGB histogram built from the query image was mapped into a max tree. Each pixel in
the image can be associated with a tree node by mapping histogram bins to tree nodes
and mapping pixels to histogram bins. By this means, commonly called backprojection,
an RGB image is converted into an indexed image in which the index is the tree-node
label. Images may then be compared using aχ2 distance between the one-dimensional
histograms of the indexed images. A refinement (method 7 in Figure 4) is to repeat the
process using the database image to build the tree. Taking the maximum of these two,
gives a metric (method 8 in Figure 4).
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The best performing methods for this task areχ2 (method 1) and the tree schemes
(methods 6,7 & 8), but note that the tree methods use fewer bins.

Building trees from simple images, such as those in the COIL-100 database is illus-
trative, but is not a realistic image retrieval task. However the formulation of realistic
retrieval tasks is non trivial because the type of query can vary considerably, the type of
image can vary considerably and the assessment of correct retrieval (ground truth) can
vary considerably. Fortunately the MPEG-7 standards committee has addressed this task
via the MPEG-7 common colour dataset and common colour queries [1]. This task uses
a database of 5466 images and a set of fifty queries with predefined ground truth images.
Figure 5 shows some ground truth images for two of the MPEG-7 queries plus a selection
of randomly chosen images from the MPEG-7 common colour dataset. Figure 6 shows
the results for a variety of retrieval metrics using both4×4×4 bin and10×10×10 bin
histograms.

Figure 5: Showing, top left, four of the six ground truth images from Query 49. Four out
the twelve ground truth images from Query 16 (top right). Ten randomly chosen images
from the 5466 images in the common colour data set (bottom).

For the 64 bin histogram (left of Figure 6) in the best performing methods the lower
quartile range is too close to zero to be visible. The best performing methods are conven-
tionalχ2 and the tree methods followed byχ2. However from Figure 7, the mean number
of tree nodes is roughly 18, and the maximum number of tree nodes is 45 – a considerable
reduction compared to the 64 entries in the original histogram. For the 1000 bin histogram
the tree methods are marginally superior toχ2 method and considerably superior to the
others. We have not computed the EMD metric because the amount of computation is
impractical. In this case the largest tree has 192 nodes. The mean number of nodes is
69. As the number of bins in the original histogram increases the compression grows. As
an aside we mention that the correlation coefficient between theχ2 performance and the
tree methods is always above 0.83 and between theχ2 and the tree methods always above
0.91, implying that some queries are difficult / easy for all methods.
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Figure 6: Showing the maximum, upper quartile, median, lower quartile and minimum
NMRR computed over 50 queries for eleven comparison methods. Also shown, as
crosses, is the mean NMRR. The methods are: 1)χ2, 2) EMD in LAB space, 3) EMD in
RGB space, 4) QBIC withA = I , 5) QBIC withA from (2), 6) Tree built from query image
and Minkowski distance, 7) Tree built from query image withχ2 distance, 8) Tree built
from database image and Minkowski distance, 9) Tree built from database image withχ2

distance, 10) Tree metric with Minkowski distance, 11) Tree metric withχ2 distance.
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Figure 7: The number of tree nodes required to represent the4×4×4 histograms (left)
and10×10×10 (right) of all the images in the MPEG-7 Common Colour Dataset.

4 Conclusions

This paper discussed a new scale-space based method for representing, analyzing and
simplifying multidimensional histograms. The method uses a tree based representation
that converts a multidimensional histogram into a data structure with fewer data entries
than the original histogram. There are several options for building the tree. Here we built
a max tree using an immersion simulation but other possibilities are multidimensional
watersheds or sieves. Of these, the later are known to have attractive computational com-
plexity – an important consideration for practical implementations. A further possibility
is that trees built usingM - or N filters (as opposed to the openings or closings used here)
can represent maxima and minima in the same data structure. At the moment we analyse
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the histogram via only its maxima, but in the future we would like to know if the minima
matter.

The trees are a valuable visualization tool because they can map anN-dimensional
histogram into a two-dimensional plot. A further advantage is that it is possible to con-
trol their detail so the resulting data structure is manageable. Testing using the MPEG-7
methodology reveals that the new method is at least as good as commonly used alter-
natives with the added benefit of using fewer entries than the original histogram. Initial
experiments indicate that retrieval performance remains robust even when the trees are
simplified further.
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