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Abstract

We describe a new approach to extracting layered representations from image
sequences based ormoving object graph@MOGs). A MOG is a form of re-

gion adjacency graph which links together local motion segmentations corre-
sponding to distinct moving regions in the scene, typically either foreground
objects or the background. The local motion segmentations are obtained by
fusing colour segmentations with block motion estimates and the MOGs link
segmentations with consistent spatial and motion properties. Linking MOGs
across frames then allows temporal consistency to be imposed and layers to
be extracted. The approach provides a flexible framework within which to
combine local and global constraints both spatially and temporally, enabling
robust motion segmentation and layer extraction. Results of experiments on
real sequences illustrate that the approach is effective.

1 Introduction

An effective approach to image sequence analysis is the use of layered representations [5].
Sequences are modelled by a set of 2-D layers which are in motion and are at different
depths from the camera, where the ‘motions’ are within the 2-D plane and the ‘depths’
define the ordering of the layers. Each frame can then be ‘reconstructed’ by superim-
posing the layers in order following application of the appropriate motion, in much the
same way as cel animations are created. Although somewhat simplistic, layering is able
to capture two key characteristics: temporal redundancy as objects appear and reappear in
successive frames across the sequence; and the occlusion relationships amongst objects
due to depth ordering. This has made it particularly useful for compression applications
[5, 6], although it is also likely to be useful in applications such as augmented reality.

Two related tasks need to be tackled when attempting to extract a layered representa-
tion. The first is the motion segmentation problem: regions moving with distinct motions
need to be accurately identified and tracked. Second, the 2-D motions between these re-
gions and a reference frame need to be determined, ie they need to be aligned with respect
to a common frame. Without user interactioneopriori knowledge, both of these tasks
are difficult and it has proved hard to design a robust algorithm for automatically extract-
ing layers. In some respects this might be considered surprising, given that one might
anticipate that the temporal redundancy amongst the frames would make the segmenta-
tion task considerably easier than that for a single image. Of course the problem with
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this is that it relies on being able to compensate for the motion between the frames and
by implication on gaining reliable estimates of the motion of distinct regions. And it is
in this that the crux of the problem lies - to obtain robust motion estimates we require
a reliable segmentation of the regioaisd vice versa In other words, to build robust
layered representations we need to come up with effective methofisfogthe spatial
information within the frames with the motion information across the frames.

The work we describe here tackles this issue head on. Our vehicle for doing this
is the Moving Object Graph(MOG), a representation of moving regions based on lo-
cal motion segmentations, ie the graph links together constituent sub-regions of larger
regions corresponding to moving objects. Nodes in the graphs are associated with the
sub-regions, each of which has its own motion and spatial support, where the latter is ei-
ther some pre-defined base support for ‘interior nodes’ or a definition of part of the larger
region boundary for ‘exterior nodes’. Our motivation for using such a representation is
twofold. First, it provides flexibility in terms of the type of region motion that can be
accommodated, not relying on fixed parametric forms as has been used by others [5] and
potentially able to deal with complex non-rigid or articulated motion. Secondly, from an
analysis point of view, it enables us to incorporate both local and global constraints within
a coherent framework, allowing local decisions to be influenced by global properties and
vice versa, both spatially and temporally. The key point here is that the ‘basic elements’ of
the representation are not pixels themselves, but sub-regions of pixels satisfying a simple
local motion model which, being relatively few in number, can be efficiently integrated
and updated using global and local constraints. Similar arguments have been made by
others using region-based representations, notatdy dij8] and Szeliski and Shum [7].

We build MOGs by first fusing colour segmentations with block based motion esti-
mates using the integrated motion assignment and depth ordering technique previously
reported in [9, 3]. This yields the local sub-regions discussed above and defines the set
of nodes in the MOG for each frame. Nodes are then linked within each MOG according
to spatial, motion and depth compatibility to give sub-grapi®G componenjseach
corresponding to a distinct moving region. These components are then linked across the
sequence and their constituent motions used to align them with a common frame in order
to generate their respective layers. As discussed above, the linking within and between
the MOGs enables both spatial and temporal consistency to be imposed and hence cor-
rection of erroneous local segmentations, leading to a robust layering algorithm. In the
following we first outline the layer and MOG models, and then describe the algorithms
for extracting MOGs and building layers. Results of experiments on real sequences are
then presented.

2 Layers and Moving Object Graphs

For the layer representation we use a non-transparent version of that originally described
by Wang and Adelson [5]: an image sequence is assumed to be a superposition of warped
depth ordered layers, such that at each pixel an alpha map ‘selects’ an intensity from a
texture map associated with one of the layers. For each frame, the warp is defined by a
spatial transformation derived from the accumulated motion with respect to a reference

frame. LetlL'(£), 0 < i < N, denote the texture maps bflayers and let/'(¢) = 0,1

be their associated binary alpha maps, where lajetcloser’ to the viewer than layer
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i — 1 and¢ is the spatial coordinate vector. Pixels in ttle frame are then assumed to be
generated by successively superimposing the texture maps as defined by the recursion

(&) = (1 — af(E) (&) + ak(§Li(€)  0<i<N 1)

with the initial condition!?(¢) = L2(€). The frame is then given by the appropriate
region ofly ~*(&). Here L} (¢) andaj (&) are the warped versions of the texture and alpha
maps respectively, igl (&) = L'(wi(€)) andak(€) = o (w(£)) wherew] (&) defines
the warp from framek into theith layer. Decomposition of a sequence into a layered
representation therefore requires generation of the texture and alpha maps, the relative
depths of the layers, and the warp fielsts(¢). We use a 3 step process to do this: (i)
identification of the regions on each layer within each frame; (ii) accumulation of the
motion and hence spatial transformation between these regions and their corresponding
regions in a reference frame (the registration step); and (iii) estimation of the texture and
alpha maps for each layer from the registered regions. As noted earlier, we base this
process on MOGs extracted from frames in the sequence.

There is one MOG defined for each frame in a sequence and each consists of a set of
nodes = {n;}. Associated with each node is analysis window \yamotion sub-region
Aj, and a parametric motiow, whereA; is within the analysis window, id4; € W, and
we assume here that the motion is translational (although this does not have to be the case
- vi could define a higher-order parametric motion such as affine). Nodes in the MOG can
share a common analysis window (but not a common motion sub-region),4eW for
somei andj, and in such cases the setgfare then contiguous sub-regions of the analysis
window, ie if C; = {j|W = Wi} thenUjec, Aj = W,. The analysis windows are arranged
on a regular grid such that each has a set of neighbouring windows, dépged! links
exist in the graph between those nodes with common and neighbouring windows, ie the
nodesn; andn; are linked ifW, = Wjorj € Ni. The use of the analysis windows is
important - they ensure that nodes within the MOG provide a complete representation of
the frame, ie they constrain the positioning and density of the nodes.

The links between neighbouring nodes have associated binarystatefined as:

()

__J 1 if ny andn; belong to the same moving object
Si 0 if nj andn; belong to different moving objects

and thus they indicate two types of linkatra-objectlinks (s; = 1) andcross-boundary
links (s; = 0), which in turn define sub-graphs within the MOG corresponding to distinct
moving regions in the frame. We call these sub-grad¥s componentand they are
defined by a set dhterior nodes connecting solely to nodes of the same moving region
via intra-object links, and a set @xterior nodes connecting to both ‘within region’
nodes and the exterior nodes of other moving regions via intra- and cross-boundary links,
respectively. Attached to each link is also a relative depth ordering indicating whether the
linked nodes are at the same depth or whether one corresponds to an object closer to the
camera. We constrain the model such that nodes belonging to the same object are at the
same depth (as dictated by our layering model) and $hus 1 also indicates equivalent
depth.

The states also indicate the presence or not of consistency between node properties,
ie if 5 = 1 itimplies that the motion sub-regions and the motions associated with nodes
n; andn; are consistent with a common moving object. Specifically, i 1 then

VViﬂV\/jﬂAi:VViﬂV\/jﬂAj 3)
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Figure 1: Examples of (a) a moving object graph and (b) a local motion assignment.

and the motions; andyv; are compatible with respect to a suitable measure based on
similarity or a local parametric form, for example. Converssjy= 0 implies thatA; N
Aj = () and that the motions are incompatible.

In the work described here we have used a simple form of MOG in which the analysis
windows are square blocks spaced at regular intervals so as to give 50% overlap between
them. An example showing the nodes, links, and associated sub-regions and motions for
a neighbourhood containing adjacent moving objects is illustrated in Fig. 1a. The non-
overlapping regions of the analysis windows are shown, the intra-object links are shown
in bold and the cross-boundary links are dashed. In the next section we describe how
we extract such a MOG from a pair of adjacent frames. Note however that the framework
could be readily extended by using alternative analysis windows. For example, an obvious
extension would be to use variable size windows, giving rise to a multiresolution form of
MOG which would be capable of adapting to scale differences within and across frames.

3 Extracting Moving Object Graphs

Extracting the MOG for a frame involves two main steps. First, the motion sub-regions
A; are identified within each of the analysis windows. This defines the number and spatial
position of the nodes in the MOG. Second, the intra-object and cross-boundary links are
formed between the nodes, thus defining the distinct MOG components. We achieve the
former by fusing a colour segmentation with block motion estimates using the integrated
motion assignment and depth-ordering technique described in [9, 3] and the latter by a lo-
cal linking process combined with a global constraint mechanism based on an adaptation
of the normalised cut algorithm [4].

3.1 Motion Assignment and Depth Ordering

We start with a colour segmentation of the frame of interest and block motion estimates
between it and an adjacent frame. The main criterion for the segmentation is that the
region boundaries should be coincident with the motion boundaries in the frame and
specifically, that the latter should be a subset of the former, ie we make the reasonable
assumption that regions of different colour may well be moving together but not vice

versa (which is rare). Thus a degree of over-fitting of the segmentation is acceptable and
preferred to under-fitting. We have found that the colour segmentation algorithm devel-
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oped by Sinclair [2] gives good overall results in this respect. This combines a colour
edge extraction process with region growing using seeds at peaks in the Voronoi image
derived from the edge map. To help maintain consistency across the sequence we prop-
agated the seeds between frames. The motion estimates were obtained using normalised
correlations applied within the analysis windoWs applied with a Hamming weighting

and implemented via the frequency domain as described in [1].

We determine the sub-regionls by assigning motions to the colour regions within
each analysis window, with the restriction that there are at most two motion sub-regions
within each analysis window, ie that a window either straddles a motion boundary between
two moving objects or is enclosed within a moving object. This restriction enables a
tractable assignment process and in fact is not unreasonable for a suitable size of window
(we used2 x 32 pixels). Moreover we can deal with the rare case of a window containing
three motions by a separate merging process as discussed below. An example is illustrated
in Fig. 1b, which shows the motion classification amongst the constituent colour regions
of the central analysis window (shown in bold), where the class is indicated by the motion
vectors and the motion boundary is shown dotted.

Full details of the motion assignment technique we use can be found in [9, 3]. Es-
sentially, this classifies the colour regions into distinct motion classes based on a motion-
compensated difference (MCD) measure which takes into account support for a given
motion from both interior and boundary pixels, where the latter is based on an explicit
model of boundary ownership and kinetic occlusion. The key advantage of the method
is that it is able to deal effectively with regions having low intensity variation for which
comparison between motions is problematical since many motions are likely to fit the
data equally well. Moreover, since it models occlusions explicitly, the depth relationships
amongst the segmented motion regions are obtained automatically as part of the classifi-
cation process. We also employ a post merging process which combines motion assign-
ments within neighbouring analysis windows in order to correct isolated errors and allow
detection of windows containing more than two motions. Finally we employptre
tial correlation technigue to improve motion estimates assigned to the regions, in which
knowledge of boundary ownership obtained from the depth ordering is used to reduce
bias when estimating the motion of occluded regions. Full details can be found in [3].

3.2 MOG Components

The result of the above analysis is the classification of one or more motion sub-regions
within each analysis window, each of which is assigned a node within the MOG for the
frame. The next step is to form the intra-object and cross-boundary links within the MOG
in order to determine the MOG components corresponding to distinct moving regions.
We do this by a combination of constraints on the MOG and requiring spatial and motion
similarity between nodes within each component. There are two constraints: (i) nodes
with the same analysis window cannot belong to the same component; and (ii) the depth
relationship amongst nodes within a component must be consistent. The first of these
ensures that the motion segmentations within analysis windows which straddle motion
boundaries dictate the formation of the MOG components, whilst the second restricts
the set of moving objects to be at distinct depths without intersections as dictated by
the layer model. The former is motivated by our observation that errors in the motion
assignment stage are primarily the mis-classification of multiple motion blocks as single
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motion blocks and thus we deal with these separately once an initial set of MOGs has
been extracted using the more reliable classification of boundary blocks (see below).
The aim of the linking process is to estimate an optimal set of link sttedVe

base this on a similarity measure between nodes within neighbouring analysis windows.
The states are established using a two pass approach: a local process first determines
the optimal states based on comparing neighbouring windows; and then a subsequent
global process refines the states so as to produce a set of MOG components which are
consistent with the two constraints listed above. The local process works by considering
each possible pair of adjacent windows in turn and for each pair starts by establishing links
between each node within one window and all the nodes in the neighbouring window.
Denoting this set of links biz, the locally optimal set of stat&¥ is then sought such that

S =arg max Z(Qsj — Drj (4)

ijeL

whereS are those sets of states for which nodes within the same analysis window are
not implicitly connected via a third node in a neighbouring window (as required by the
first constraint above), ie g = 1 andW, = W thensy = 0. Here,r; is a similarity
measure between nodesandn; based on spatial support and motion, taking higher
values for greater similarity and vice versa. Thus sigce= 1 for an intra-object link
andsj = 0 for a cross-boundary link, eqn (4) promotes state configurations with high
similarity between nodes within the same moving region and low similarity between those
in different regions.

The similarity measure we use has the form

ri = exp(—ypj — (1 —vy)my) (5)

wherep;; andmy; are measures of similarity in spatial support and motion,tafddy < 1
determines the relative weight placed on each component. The spatial support component
is defined as
_ [Ai A

[WE N WM (AU A

and reflects the model assumption in eqgn (3)pjiés close to zero if the motion sub-
regions overlap significantly, hence increasing the similarity measure. For the motion, the
Mahalanobis distance between that estimated at each node is used, ie

pj =1 (6)

my = (vi = v)) TGy (vi — v)) (7
whereC;j is the sum o x 2 covariance matrices associated with each motion estimate
[1], ie m; indicates the difference in the motions weighted by their directional certainty.
The above local linking yields an initial set of MOG components which may or may
not satisfy the two constraints given above. If not, then we employ a global process
which attempts to split inconsistent components into consistent ones. For example, in
the case of a mis-classification of a multiple motion block as a single motion block, this
can lead to two components being joined via the mis-classified block. However, it is
also likely that blocks nearby will contain nodes from both components, thus giving a
depth inconsistency within the erroneously detected combined MOG. We therefore seek
to remove the link via the single motion block and hence give two consistent MOGs.
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The splitting process is a top-down diadic scheme in which we first split an inconsistent
MOG into two, check for consistency, and then split again if necessary; repeating until
all of the MOGs are consistent. Each split is achieved by a minimal cost removal of links
to produce two separate MOGs, ie we remove that set of links whose sum of similarity
measures is minimum over all sets which yield two separate MOGs. Identifying such sets
is computationally demanding and so we use the more efficient ‘normalised cut method’
developed by Shi and Malik [4] which, although an approximation, gives good results
for this particular application. Finally, we assign a depth index to each MOG component
within the frame based on a simple tally amongst its exterior nodes.

4 Building Layers

The next stage of the algorithm is to build the motion layers using the MOGs extracted
from the frames in the sequence. There are essentially three tasks involved: (i) to link
together corresponding MOG components within the sequence; (i) to register the corre-
sponding components with respect to a reference frame; and (iii) to build the layer texture
and alpha maps for each set of corresponding components. Note that each MOG com-
ponent is therefore regarded as a distinct layer; in contrast to [5] for example, the layers
consist of connected sub-regions, not simply regions considered to be at the same depth.

4.1 Temporal MOG Linking

We form temporal links between MOG components in adjacent frames by first linking
interior nodes and then propagating the links out to exterior nodes. Since the interior
nodes in all frames lie on the same regular grid as defined by the distribution of analysis
windows, this linking requires knowledge both of the motion between frames and of the
accumulated motion from a reference frame modulo the size of the analysis windows. Es-
sentially, we ‘track’ the interior nodes extracted in the reference frame by linking together
the interior nodes through which their analysis windows pass as illustrated in Fig. 2. The
exterior nodes are then linked in a way which is consistent with the interior links across
the sequence. As new nodes appear these are added to the reference frame as ‘virtual
nodes’. Thus at any given time, all of the nodes can be registered with respect to the
reference frame, hence enabling the layer corresponding to the linked MOG components
to be created.

At this point we also seek temporal consistency by requiring that the motion assign-
ments amongst linked nodes across a small temporal window are consistent and correct
any isolated mis-classifications. This is based on applying the motion assignment tech-
nigue to all frame pairs within the window and allowing reliable assignments to reinforce
each other to give the most confident overall assignment. This proves to be effective, par-
ticularly since for frames further apart the kinetic occlusion effects are more pronounced
and thus motion assignment and depth ordering are more reliable. The caveat is that in
our current implementation we assume a purely translational motion model and thus our
temporal window needs to be limited in order to ensure that this model is valid for all
frame pairs. Note, however, it is the MOG framework based on a relatively small num-
ber of linked local regions moving with simple motions which enables us to impose the
temporal consistency.
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Figure 2: Notional tracking of interior nodes within reference frame by temporal linking
of subsequent interior nodes through which they pass.

4.2 Layer Accumulation

To build a layer we need to combine the motion sub-regions within the set of correspond-
ing MOG components. To do this we generate two pixel resolution buffers, one for each
layer: acolour buffer to record the colours contributed to each pixel by the sub-regions
of each MOG; and #ally buffer, to record the tally of contributions made to each pixel.
Thus, for a given frame and for each node within a MOG component, pixels within the
sub-regions are registered with the buffers using the accumulated motion and then their
pixel values recorded in the colour buffer at the appropriate locations. Each correspond-
ing location in the tally buffer is then incremented. Once this has been completed over
all frames, the texture map for each layer is generated by computing the median of the
colour components at each pixel stored in the colour buffer. Each corresponding alpha
map is then generated by setting those locations with a tally above a pre-defined thresh-
old. The tally buffer therefore enables isolated mis-classification of pixels between layers
to be discarded, producing more robust layering. For each layer the depth order is simply
inherited from the MOG components within the frames, with the constraint that a change
of depth order requires assertion over several consecutive frames.

5 EXxperiments

We have tested the layer extraction algorithm on three sequences: table tennis; a sequence
of two gloved hands moving towards each other at different depths; and a sequence of a
running Leopard. Example frames are shown in Fig. 3. The initial extraction of motion
sub-regions for these frames are shown along the top row, with the non-overlapping por-
tions of the analysis windows indicated by the overlaid grid. The colour segmentation
boundaries are shown in white and the motion sub-regions are indicated by light or dark
regions. The correct motion assignments and depth orderings have been identified. Note
that where the fingertips of the hands meet, the straddling block contains a third motion
region corresponding to the background which has been produced by merging neighbour-
ing segmentations. Note also that at this stage there is no consistent labelling between the
local segmentations and hence an arbitrary label assignment has been made in each anal-
ysis window. The MOGs obtained for these frames are shown in the bottom row of Fig.
3. These show the boundaries of each distinct component (obtained from the sub-regions
associated with the exterior nodes), the analysis window grid, and the intra-object links
within the MOG.

Finally, Figs. 4 and 5 show the layers extracted for each sequence. In the Hands
sequence the background layer starts out as two distinct layers since we require a single
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Figure 3: Motion sub-regions (top) and moving object graphs (bottom).

connected region on each layer but these are then merged at a later stage once the Hands
have moved apart and the occluded floor underneath becomes visible. Note also that part
of the right hand is initially occluded and is then ‘built up’ within the layer as frames are
processed. As an illustration of the effectiveness of the layers extracted, Fig . 6 shows
frames from a reconstruction of the sequence from the layers but with the depth order of
the hands reversed. The result is surprisingly realistic when viewed as a sequence. The
leopard sequence is a particularly difficult example, with large motions between frames
and considerable motion blur, as is evident from the slight blurring in the extracted layers.
Nevertheless, the shape and key features of the animal in the foreground layer have been
successfully built up, despite the fact that only part of the Leopard is visible in any given
frame due to camera zoom and pan.

6 Conclusions

We have described a novel approach to motion segmentation and layering. The key con-
tribution of the work is the use of thmoving object graphahich provide flexibility and
robustness while being computationally tractable. Notably it provides us with an effective
framework within which to incorporate both spatial and temporal constraints in an effi-
cient and coherent manner. Note however that the extraction of the MOG representations
relies significantly on the use of the robust motion assignment method and in particular
its ability to simultaneously estimate relative depth order. We are now looking at extend-
ing the use of the MOG approach to deal with non-rigid or locally rigid motions, and to
generating the representations within a more formal MRF-type framework.
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Figure 4: Layers extracted from the Table Tennis sequence
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