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Abstract

This paper describes an algorithm for shape estimation in cluttered scenes.
A new image potential is defined based on strokes detected in the image. The
motivation is simple. Feature detectors (e.g., edge points detectors) produce
many outliers which hamper the performance of boundary extraction algo-
rithms. To overcome this difficulty we organize edges in strokes and assign
a confidence degree (weight) to each stroke. The confidence degrees depend
on the distance of the stroke points to the boundary estimates and they are
updated during the estimation process. A deformable model is used to esti-
mate the object boundary, based on the minimization of an adaptive potential
function which depends on the confidence degree assigned to each stroke.
Therefore, the image potential changes during the estimation process. Both
steps (weight update, energy minimization) are derived as the solution of a
maximum likelihood estimation problem using EM algorithm.

Experimental tests are provided to illustrate the performance of the pro-
posed algorithm.

1 Introduction

Active contours estimate the object boundary using a deformable curve. During the es-
timation process the model points move under the influence of image forces and internal
forces. Image forces attract the model towards specific image features (e.g., edge points)
and internal forces try to keep shape coherence during the convergence process [12].

The design of image forces has been thoroughly investigated (e.g., see [5, 6, 7, 15]).
The main difficulty concerns the presence of invalid features (outliers) which are not
located at the object boundary and attract the elastic model towards wrong shape config-
urations.

Several strategies have been proposed to improve the performance of active contours
e.g., the use of a validation gate to reduce the search region [3], nonlinear filtering tech-
niques with non-Gaussian distributions [10], the use of geometric and dynamic constraints
to reduce shape and motion variability [4, 7] and robust estimation techniques which are
able to reduce the influence of outliers on the final shape estimates [14].

A different approach is proposed here. The shape estimate is obtained by the mini-
mization of a potential function as in the original snake algorithm. However a new adap-
tive potential is used which reduces the influence of outliers.
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The method proposed in this paper is based on two key ideas. First, middle level
features (strokes) are used instead of low level ones (edge points). Middle level features
are more informative and reliable. Their use has been recently proposed by several authors
in [9, 11, 14, 16]. Second, a confidence degree (weight) is assigned to each stroke. All
strokes contribute to the image potential but with different weights. Weight assignment
is not performed on a heuristic basis but it is obtained using a probabilistic model for the
observed data and the EM algorithm.

The paper is organized as follows. Section 2 describes the estimation of active con-
tours parameters, assuming that we know which features are valid and which are outliers
(known labeling). Section 3 extends these ideas to the case in which such labeling infor-
mation is unknown. Section 4 deals with the optimization issues and section 5 presents
the experimental results. Section 6 concludes the paper.

2 Known Labeling

This section addresses shape estimation assuming that we know which features are valid
and which are outliers. For the sake of simplicity no regularization forces will be con-
sidered in this section. Lety be the the set of all features detected in an image and let
us assume thaty is organized in strokesy = fy1; : : : ; yNg, yj being the set of observa-
tions (edges points) belonging to the j-th stroke. Letx be a contour model defined by a
sequence of 2D pointsxi; i = 1; : : : ;M . The goal is to approximate the data contained
in y by the contour modelx. To accomplish this, we shall consider the potential function

P (xi; y; k) = �
X
j; n

�(xi; y
j
n; k

j) (1)

xi is the i-th model unit;yjn is the n-th observation of the j-th stroke;k = fk 1; : : : ; kNg is
a set of stroke labels, (kj = 1 if the j-th label is valid;kj = 0 otherwise) and�measures
the influence ofyjn on the image pointxi. The contribution of each featurey jn to the
potential is defined by
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whereG(jyjn � xij
2) is a Gaussian kernel andV is a constant.

If y; k were known the contour model would be obtained by minimizing the contour
energy

x̂ = argmin
x

X
i

P (xi; y; k) (3)

Equation (3) is equivalent to the snake algorithm with the Cohen potential [6] provided
that we assume that all data is valid i.e.,k

j = 1;8j .
The problem may also be addressed in a probabilistic framework, by assuming they,

k are random variables with probability density function

p(y; k j x) = � e
�

P
i
P (xi) (4)

The log likelihood function is
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l(x; y; k) = log p(y; k j x) = C �
X
i

P (xi) (5)

and the minimization of the log likelihood function leads to the same optimization prob-
lem defined in (3). In practice we do not know which features are valid and which are
outliers. The labelskj are therefore unknown. This problem is addressed in the next
section.

3 Adaptive Potential

Since the stroke labels are unknown in practice, the object contour should be estimated
by maximizing the likelihood function of the observed data

log p(y j x) = log
X
k

p(y; k j x) (6)

This is however a difficult problem. One way to circumvent this difficulty is by using the
EM algorithm [8] which optimizes the ML criteria by using an auxiliary function

U(x; x̂) , Ekflog p(y; k j x) j y; x̂g (7)

Using (4)

U =
X
j

Ek

n
log p(yj ; kj j x)

o

=
X
j

w
j log p(yj ; kj = 1 j x) + (1� w

j) log p(yj ; kj = 0 j x)
(8)

wherewj = p(kj = 1 j yj ; x̂).
The second term (8) (outlier potentials) can be discarded since it does not depend on

x. Therefore the objective function becomes

U = C �
X
i

Pa(xi; y) (9)

where

Pa(xi; y) =
X
j

�
�
X
n

G(jxi � y
j
nj

2)
�
w
j (10)

will be denoted as an adaptive potential since it depends on the confidence degrees of the
image strokeswj which vary during the estimation process. The weightsw

j are computed
in the E step of the EM algorithm

w
j = p(kj j yj ; x̂) = � p(yj j kj ; x̂) p(kj j x̂)

= � c
j
Y
i

e

P
n
G(jyjn�xij

2) (11)

wherecj is a constant.
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4 Contour Estimation

The cost function to be considered contains two terms: a regularization term based on
strings with average lengthl0, defined as in [13] and an image dependent term given by
(10), i.e.

J =
X
i

(li � l0)
2 + Pa (12)

li = jxi+1 � xij is the distance between consecutive model points andl0 is the average
distance specified by the user.

The minimization of (12) is performed in the M-step, i.e.

x̂
t+1 = argmax

x
J(x; x̂t) (13)

for example using the gradient algorithm

x
t+1 = x

t � 
rxJ (14)

whererx is the gradient operator defined byrxJ = [rx1J; : : : ;rxMJ ]
T .

Equation (14) can be rewritten as

x
t+1 = x

t � 
ifint + 
efimg (15)

wherefint(xi) andfimg(xi) are interpreted as internal and external forces given by

fint(xi) = �2
li � l0

li

(xi+1 � xi) (16)
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j
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2) (17)

This result is related to other works. In [1] it is shown that several methods share
the same structure and belong to a unified framework in which model points are attracted
towards data centroids under the influence of external forces

fimg(xi) = �i(�i � xi) (18)

After straightforward manipulation it is concluded that the algorithm developed in this
paper also belongs to this framework and the external forces (17) can be rewritten as in
(18) with

�i =
X
j
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j
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These expressions also suggest that other algorithms can be obtained by adopting
other choices for#i(y). In this paper#i(y) = G(jyjn � xij

2). Similar expressions for
edge point features were also derived by [2].
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5 Experimental Results

This section presents experimental results obtained with synthetic and real images. We
compare the proposed algorithm with the snakes algorithm obtained by assuming that all
the data features are valid. In each iteration, the boundary model is resampled at equally
spaced points. The gain
i used in (15) is chosen as proposed in [5], through the nor-
malization of the internal forces. For the external forces we use independent gain factors
acting on each model unit as in [1].

Example 1
Suppose that we want to estimate the contour of a square in the presence of a large number
of outlier strokes. The data and the initial estimate of the contour are shown in the left
column of Fig. 1. This figure shows the results obtained with Snake potential (upper row)
and with the adaptive potential proposed in this paper (lower row). It is concluded that
the adaptive potential reduces the influence of outliers and allows an accurate estimation
of the object boundary.

Figure 1: Results obtained with Snake potential (top row) and with the adaptive potential
(bottom row). Each row shows initial, intermediate and final results.

Example 2
Another example is shown in Fig. 2. Two strokes are detected in the vicinity of the hand
(left images): a valid stroke (hand boundary) and an outlier (white bar). Both methods
were used to estimate the hand. It is observed that the adaptive potential manages to solve
this problem as well while the classic potential leads to a local maximum. Fig. 3 shows
the evolution of both potentials during the convergence process. The dark regions are the
potential valleys which attract the model units.
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Figure 2: Results obtained with Snake potential (top row) iterations 1, 7, 20 and with
adaptive potential (bottom row) iterations 1, 7, 10.

Figure 3: Image potential obtained with Snake potential (top row) iterations 4, 10, 20 and
with adaptive potential (bottom row) iterations 2, 5, 10.
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Figure 4: Evolution of the weights.

We can see that significant changes occur in the case of theEM based potential: the
valley associated with the outlier stroke is filled during the estimation process. This is due
to the variation of the weights illustrated in Fig. 4. At the first iterations both strokes had
similar weights. However the weight of the hand stroke increases during the convergence
process while the weight of the sweater stroke decreases.

Example 3
This example illustrates the performance of the proposed algorithm in the estimation of
car boundaries. Figures 5,6 show the results obtained with the Snake potential and with
the adaptive potential in two cases. These examples illustrates two typical situations. In
the first example only a poor estimate of the object shape is available. The initial contour
is therefore very far from the car boundary. In the second example, there is a good shape
estimate but there is a significant shift with respect to the true boundary. The initial pose
estimate is poor. The shape estimation with snake potential fails in both cases while the
proposed algorithm manages to solve both problems well.

Figure 7 shows the strokes detected in both images.

Figure 5: Results obtained with Snake potential (top row) and adaptive potential (bottom
row) iterations 1, 7, 40.



350

Figure 6: Results obtained with Snake potential (top row) iterations 1, 4, 30 and adaptive
potential (bottom row) iterations 1, 4, 8.

Figure 7: Strokes detected in the images (circles are the initial position).
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6 Conclusions

This paper proposes a new algorithm for the estimation of object boundary in the presence
of outliers. The object boundary is approximated by a deformable contour as in snakes.
Model points are deformed by internal forces and by external forces computed using an
image potential. However, instead of using the classic potential function which remain
invariant during the convergence process, an adaptive potential is proposed which is able
to discard the influence of outliers. This is achieved as follows. Image features (edges
points) are organized in strokes and each stroke is either classified as valid or invalid
(outlier). Since this information is not available a confidence degree is assigned to each
stroke which is updated during the estimation process. Therefore all strokes contribute
to the image potential function but with different weights. The image potential and the
contour model are recursively estimated in a ML framework by the EM algorithm.

Experimental tests have shown that the proposed algorithm is robust and provides
much better results than the snake algorithm in the presence of clutter.
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