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Abstract

We demonstrate a novel method for producing a synthetic talking head. The
method isbased on earlier workinwhich thebehaviour of a syntheticindivid-
ual isgenerated by reference to a probabilistic model of interactive behaviour
within the visual domain - such models are learnt automatically from typical
interactions. We extend this work into a combined visual and auditory do-
main and employ a state-of-the-art facial appearance model. Theresultisa
synthetic talking head that responds appropriately and with correct timing to
simple forms of greeting with variationsin facial expression and intonation.

keywords: interactive head, face tracking, speech reconstitution, vir-
tual partner, behaviour moddling.

1 Introduction

The screen-based "talking head' is a powerful device for mediating interaction between
humans and machines, enabling a form of interaction that mimics direct communication
between humans[10, 1, 11]. The experience of realism isfurther enhanced when the com-
puter isequipped with visual and auditory senseswith whichto perceivetheuser [6, 2, 13,
4]. In this symmetric situation, both the human and synthetic head can see and be seen,
and can hear and be heard.

Of paramount importance within face to face conversation is of course the content of
what is said. However, the sequence and timing of accompanying facial expressionsis
also important; mistimed or inappropriate expressions may convey unintended meaning
and can therefore be disruptive. It is reasonable to suppose the same requirements will
apply for human interaction with a synthetic talking head.

An approach that begins to meet these requirementsis proposed in [9] and [6]. Their
ideais based on the common notion of a state space, in which each vector represents the
instantaneous configuration of a participant in an interaction. Such vectors are the end-
point of aperceptual process within the computer, sensing the human party, and the start-
point for a graphical process generating the synthetic individual. An interaction can be
thought of as a pathway through the joint configuration space corresponding to the human
and synthetic party in an interaction. The range of possibleinteractionsisrepresented asa
stochastic process over the joint configuration space, which islearnt through observation
of real interactionscaptured on video. Johnson et a. [8] model ed the profiles of two people
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shaking hands. Jebaraet d. [6] model ed head and hand gestures. 1n both cases, themodels
were used to drive a syntheticindividua in response to past joint behaviour.

In the current paper, we construct asimple synthetictalking head by adopting the same
approach together with combined modeling of speech and facia expression. The princi-
pal objective has been to produce a reactive head in which speech utterances and facial
expressions are both appropriate and timely. We handle only a few kinds of simple ver-
bal interactions. Nevertheless, the resulting system isindicative of anew kind of medium
that could replace the photograph in an album or the home video with areactive icon of a
familiar person - hence thetitle of the paper.

2 Representingfacial appearance and sound

Configurationsof thetaking head over asampling interval (typically around 0.05 second)
are represented by the parameters of afacia appearance model, based on that proposed in
[3], combined with the principal components of spectral coefficients from the correspond-
ing sound fragment. These choices were determined by the need for an internal represen-
tation that was both concise, to facilitate construction of a stochastic process model, and
capable of being mapped back on to realistic images and sounds.

2.1 Facial appearance

Facia appearance is represented by the parameters of a combined model of shape and in-
tensity variation for the human face [3]. Thismodel isgenerated from training data of typ-
ical faces, marked-up by hand with spline curves delineating prominent facial structures
(Figure 1). A principa component analysis (PCA), applied to the parameters of the fa-
cia lineswithin an adigned frame of reference, recovers an underlying set of axes of shape
variation.

Any face shape x can then be approximated with :

z =1z + Pb; (@D}

where z isthe mean shape, P, isamatrix with columnsthe principa orthogona modes
of variation and b, is a vector of shape parameters. Figure 2 illustrates the facid lines
generated from three different sets of values for the parameters of such a shape model.

Figure1: Spline curves delineating prominent structures of the face

A grey-level appearance model is constructed by warping each face from the training
set onto themean shape and applying principa component anaysisto thenormalised data.
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Figure 2: Face shapes generated from three different sets of parameters values

Thewarpingisperformed by triangul ating between pointson each facial line (seefigure 3)
and applying an affine mapping between corresponding triangles. Any normalized grey-
level face g can then be approximated with :

g:.(j‘i'Pgbg 2

with g the mean grey-level face, P, a matrix with columns the principa orthogonal
modes of variation and b, avector of grey-level parameters.

Figure 3: Mean shape triangulated for warping

A face can now be synthesised from shape and grey-level parameters by generating
the normalized grey-level image and warping it to the given shape (figure 4)

Figure4: Faces generated from three sets of values for model parameters

In the experiments reported in this paper, there are 10 parameters in the fina facial
appearance model to which are added 4 parameters for position, orientation and scaling
(giving atotal of 14 parameters). A separate model is required for each individua. We
do not modd variationsin identity, although the modeling framework can be extended to
do this (see [3]). In generd, a specific face is represented by assigning values to the n
parameters of the facial appearance model: £ = {fo, f1, .., fu—1}
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The mapping from a given visua image to the corresponding parameters of the ap-
pearance mode is performed using the iterative search proposed in [3]. Theideaisto ad-
just model parameters so that the corresponding synthetic face matches the new image as
closely aspossible. Figure5 showsaclose match between an inputimage and the synthetic
face chosen as best match.

The difference between a new image and one synthesized by the appearance model
needs to be minimised. A difference vector 67 can be defined:

6l =1-—1; (3)

where [ isthevector of grey-level valuesin theimage, and /;isthe vector of synthe-
sized grey-level valuesfor the current parameters. To locate the best match between model
and image, the aim is to minimise the magnitude of the difference vector, A = |61|2, by
varying the model parameters f. The relationship between 67 and the error in the model
parametersis assumed to belinear :

6f = ASI (4)

To find A, multivariate linear regression is performed on a random sample of model
displacements {éf;} and the corresponding difference images {61;}.

e

A9
Figure5: The closest matching synthetic face to anew image

2.2 Sound

The speech waveform is partitioned into frames containing 512 samples. In our experi-
ments, the speech signal issampled at 11kHz, giving 21.53 frames per second. A spectral
analysisis performed on each frame using afast fourier transform [12].

A principal component analysis on the vectors of spectral components from a train-
ing set of utterances alows a concise representation of individual frames. For our experi-
ments, thefirst 70 principal componentswerefound to give adequate reconstruction of the
waveform (figure 6). Thus, each frame (512 waveform samples, lasting 46ms) is repre-
sented by 70 parameters. In general, a specific frame of sound isrepresented by assigning
valuesto the m parameters of the sound model: s = {so, s1, .., Sm—1}

The sound model is able to reproduce with fidelity all the vocabulary occurringin the
utterances it has been trained with. Any utterance not occurring in the training set would
be expected to give a poor reconstitution, like that shown on the bottom-Ieft of figure 6.
Infigure 7, theresidual error for different utterances with the use of different numbers of
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Figure 6: On the left the sound ‘bonjour’ (top) with reconstitution (bottom). This sound
isnot in thetraining set. On theright the sound 'Hello’ (top) with reconstitution (bottom)

principal components can be observed. Note that the french "bonjour’ is relatively well
matched globaly (i.e. a comparable residual) even though it was not part of the training
et
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Figure7: Quality of recongtitutionof different utteranceswiththe useof different numbers
of components. Only 'Bonjour’ did not occur in the training set.

3 Representinginteractions

A separate face model and sound model are built for each speaker. In our experiments,
we use 15 training sequences of the same pair of individuas, recorded at 15 frames per
second for thevideo and 11kHz for the sound. Thevideoisresampled to 21.53fpsto match
the rate at which sound frames occur. Facia appearance is encoded in 14 parameters and
individua sound frames are encoded in 70 parameters.

An interaction is represented by the joint behaviour of the two individuasinvolved.
At any giveninstant, thejoint configurationis described by a combined face/speech vector
C; (seefigure 8). The temporal evolution of an interaction is represented by an ordered
set of statevectors {Fy, F1, ..., Fi}, consisting of the combined vector C; and it’'s scaled
first derivative AC,, approximated inthetraining databy thedifferencein combined vector
between successive frames :

F; = (Cy, ACy) (5)
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The resultant vector derived from the training data has 168 components.
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Figure8: Joint vector of the combined face/speech vectorsfor the two talking-heads
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In [9], a probability density function over the space of possibleinteractionsis learnt
from training data of typical interactions- in their case, handshakesviewed in profile. The
method used for representing the density function was used earlier in [7] for the character-
ization of general behaviourswhich last an indefinitetime and invol ve a high-dimensiona
state space.

The method isin two parts. First the state vectors derived from the training data are
approximated by a set of state prototypes placed by vector quantisation.

The second part builds on thefirst to provide a vector representation for extended be-
haviours. Theway inwhich thisisachieved may be visualised asfollows. Each state pro-
totypehas an associated activation level that isinitialisedto zero for the encoding of asin-
glebehaviour. The behaviour istraced from beginningto end, and at each time step the ac-
tivation of each state prototypeeither decays by afixed proportionor takesonavauethat is
alinearly decreasing function of the prototype' sdistance from the current state, whichever
givesthelargest value. The pattern of activation levels at each time-step provides an en-
coding of thebehaviour up until that point on the trgjectory and thisis recorded as a vector
- referred to as abehaviour vector to distinguish from the state vectors.

The same procedureisrepeated for all behavioursinthetraining set, giving alarge col-
lection of behaviour vectors encoding thesetrajectoriesand all partial trajectoriesimplicit
in their generation. This approach to encoding the evolution of a system is equivaent to
the so-called leaky neural network model. Finaly, the distribution of behaviour vectors
extracted from thetraining data are themsel ves encoded by a set of prototype behaviours,
again derived by vector quantisation.

Thefinal behaviour prototypesprovideacompressed model for therange of behaviours
observed in thetraining data. This model can be adapted to serve as a piecewise uniform
probability density function in which each prototypeisreplaced by a uniformregion with
magnitude proportional to theloca density of prototypes, whichisin turn proportional to
the observed density of training behaviours (for details see [7]).

We adopt the same method for encoding interactions. In our experiments, a set of 500
168-dimensiona state prototypes were obtained from vector quantisation in thefirst part
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of the method, and a set of 500 500-dimensional behaviour prototypeswere obtained in
the second part.

4 Generatingaresponse

Unfortunately, the behaviour model is not easily generative in the sense that it might be
used to produce a sampleinteractive behaviour. Althoughtheinformationrequirediscon-
tained in the representation, it is not easily extracted. To rectify this problem, a Markov
chain is superimposed on top of the behaviour prototypes, with transitions defining the
ways in which behavioursin the neighbourhood of prototypes may evolve between time-
steps. The probability of a transition is estimated from the proportion of such transitions
observed in the training set.

Although this extension to the behaviour model satisfies the Markov property that the
probability of moving to the next prototype is dependent only on the current prototype,
because the current prototype encodes the history withinitsaf, there remains alonger du-
ration temporal dependence. Thisis not aMarkov chain over state prototypes.

In tracking the user during an interaction, we must deal with uncertainty in the ele-
ments of that part of the state vector acquired from pre-processing each incoming frame.
A Bayesian framework isadopted in which the posterior density for the hypothesi sed state
F'; a each time-step isestimated recursively from aprior density for the state and thelike-
lihood function given the current observation S#:

P(Ft|SfI,~--,S£I) X P(SfI|Ft)P(Ft|S£1,...,S£I) (6)

where P(F;|SH, ..., Si) isthe conditiona distribution of state given an observation
history, P(S |F;) measures the likelihood of a state F';, giving rise to observation S,
and P(F,|SE |, ...SE) istheprior distributionrepresenting predictionsfrom the posterior
distribution P(F,_|SH |, ...S{), from the previoustime step.

A Gaussian likelihood function is used, based on the hypothesis’ error E(F, SH):

H\2
E(F,S{) ) . ™

P(SfI|Ft) = exp <_ 9202

We implement the CONDENSATION tracking agorithm of Isard and Blake [5], in
which the posterior density is represented by a set of sample hypotheses. In our experi-
ments, atota of 100 sample hypotheses were found to be adequate.

In general, the maximum of the posterior density provides aplausiblefina hypothesis
of the current state of an interaction. Unfortunately, it is hard to estimate this from the
representation of the density. Instead the state hypothesis that maximises the likelihood
functionissdected, and the corresponding synthetic facia appearance and sound fragment
generated. Thisturnsout to satisfy our purposesin practice.

5 Behaviour filter

The Markov chain describe al the behaviour seen in the training sequences. With alarge
and varied training data set al the basics action/reaction should be modelled. Any se-
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guence of a correct behaviour should be able to go through the Markov Chain using the
maximum likelihood keeping the error £(F, S) under afixed threshold.

On thefigure 9 we can observe the error variation when an incorrect behaviour is per-
formed

oosf- H
\,‘,/\/‘\/‘\/ N

Figure9: Unusual behaviour indotted line, usual oneinplainline. Thevertical axisisthe
E(F,,SH) value and on the horizontal one the sequence of images

This behaviour threshold (BT) can be used as afilter for a correct behaviour. Any
incorrect behaviour would be detected when the error E(F,, SH) goes over thethreshold.

In asituation when an answer is expected, like a smile or asimple chiming! face, the
system could take over if nothing happens. The a gorithmto go throughthe Markov Chain
is:

1. Select theinitial hypothesisH, from the set X of al potential initial hypotheses
such that the error E(F o, S is minimised.

2. if BE(F,,S7) < BT then produce the observed talking response S¥ else produce
the virtual human’sresponse S} from .

3. Sdlect thefuturehypothesisH4, fromtheset X, of all potential future hypothe-
sessuch that theerror E(F 41, S{, ;) isminimised. The potential hypotheses ;1
are extrapolationsat timet + 1 from ;.

4. Repesat steps 2-3 until the end state is reached.

6 Reaults

We show results from a set of experiments in which the system is trained with simplein-
teractions involving the greetings 'Hello’, "Hi’ and "How do you do?, with associated
responses and facial expressions on both sides (The utterances used are shownintable 1).

Training data is acquired from a pair of cameras and microphone headsets attached
directly to workstations at which the two participantsin an interaction are seated. Figure
10 shows a single frame from each video stream and the compl ete speech waveforms for
asingleinteraction from the training set.

At present, the system istoo slow (about 2fps) to allow real-time responsesto the user.
For thisreason, optimal responses are generated off-lineto a pre-recorded greeting. This

1 Chiming : from the use of 'to chimein’. If someonechimesin, they say something just after someoneelse
has spoken, usually to agree with them or to support their argument [Collins Cobuild dct]
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L earning sequences
| Question | Answer | Number
1( “hello?” “Hello!” 5
2 || “Hi 2 “Hi there!” 4
3 || “howdoyoudo? | “Fine!” 5
4| - - 1

Table 1: Learning sequences : different interactionswith different intonations

Figure 10: Illustrating a typicd interaction from the training set

opensthe natura feedback loop in an interaction between two individual sbut neverthel ess
demonstrates correct timing and appropriateness of responses. We do not expect thereal-
time system (nearing completion) to perform in aqudlitatively different way.

The waveform and asingle video frame from a pre-recorded greeting is shown on the
left infigure 11. The response of the synthetic head is shown aongside thison the right.

Figure 11: A single speaker saying "hello” istracked (and the virtual partner answering
"hello” isdisplayed

7 Conclusion

Theresults obtained are preliminary and for anon-real-time system. However, theoverall
framework linking speech with video within areactive system has been demonstrated. We
will shortly have completed areal -time version and thiswill facilitate more rapid experi-
mentation and closure of the feedback loop between the user and the synthetic head.
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The approach presented is not intended to deal with anything but simple forms of in-
teraction of the kind shown. Broader use of English would introduce a new dimension of
complexity that isbeyond its scope. Nevertheless, we believe thework hastaken astepin
the direction of the living pictures of dead personsin’Harry Potter’ who smile back and
actively listen to people.
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